Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
cursoAR
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Mario Chirinos Colunga
cursoAR
Commits
1381b300
Commit
1381b300
authored
Oct 07, 2022
by
Mario Chirinos
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
notebook
parent
2543425c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
66 deletions
+18
-66
CursoAR.ipynb
src/CursoAR.ipynb
+18
-66
No files found.
src/CursoAR.ipynb
View file @
1381b300
...
@@ -99,7 +99,7 @@
...
@@ -99,7 +99,7 @@
"referenceImage = cv2.imread('../resources/img/patron.png', 0)\n",
"referenceImage = cv2.imread('../resources/img/patron.png', 0)\n",
"referenceImage_rgb = cv2.imread('../resources/img/patron.png', 1)\n",
"referenceImage_rgb = cv2.imread('../resources/img/patron.png', 1)\n",
"\n",
"\n",
"#
Show image
\n",
"#
Mostrar Imagen
\n",
"plt.imshow( cv2.cvtColor(referenceImage_rgb, cv2.COLOR_BGR2RGB))\n",
"plt.imshow( cv2.cvtColor(referenceImage_rgb, cv2.COLOR_BGR2RGB))\n",
"plt.show()"
"plt.show()"
]
]
...
@@ -134,7 +134,7 @@
...
@@ -134,7 +134,7 @@
"sourceImage = cv2.imread('../resources/img/escena0.jpg', 0)\n",
"sourceImage = cv2.imread('../resources/img/escena0.jpg', 0)\n",
"sourceImage_rgb = cv2.imread('../resources/img/escena0.jpg', 1)\n",
"sourceImage_rgb = cv2.imread('../resources/img/escena0.jpg', 1)\n",
"\n",
"\n",
"#
Show image
\n",
"#
Mostrar Imagen
\n",
"plt.imshow(cv2.cvtColor(sourceImage_rgb, cv2.COLOR_BGR2RGB))\n",
"plt.imshow(cv2.cvtColor(sourceImage_rgb, cv2.COLOR_BGR2RGB))\n",
"plt.show()"
"plt.show()"
]
]
...
@@ -243,26 +243,20 @@
...
@@ -243,26 +243,20 @@
"source": [
"source": [
"MIN_MATCHES = 30\n",
"MIN_MATCHES = 30\n",
" \n",
" \n",
"#
create brute force matcher object
\n",
"#
Crear objeto brute force matcher
\n",
"bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)\n",
"bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)\n",
"\n",
"\n",
"#
Compute model keypoints and its descriptor
s\n",
"#
Encontrar puntos de interes y generar descriptore
s\n",
"referenceImagePts, referenceImageDsc = orb.detectAndCompute(referenceImage, None)\n",
"referenceImagePts, referenceImageDsc = orb.detectAndCompute(referenceImage, None)\n",
"\n",
"# Compute scene keypoints and its descriptors\n",
"sourceImagePts, sourceImageDsc = orb.detectAndCompute(sourceImage, None)\n",
"sourceImagePts, sourceImageDsc = orb.detectAndCompute(sourceImage, None)\n",
"\n",
"\n",
"#
Match frame descriptors with model descriptor
s\n",
"#
Encontrar correspondencias entre puntos de intere
s\n",
"matches = bf.match(referenceImageDsc, sourceImageDsc)\n",
"matches = bf.match(referenceImageDsc, sourceImageDsc)\n",
"\n",
"# Sort them in the order of their distance\n",
"matches = sorted(matches, key=lambda x: x.distance)\n",
"matches = sorted(matches, key=lambda x: x.distance)\n",
"\n",
"\n",
"if len(matches) > MIN_MATCHES:\n",
"if len(matches) > MIN_MATCHES:\n",
" # draw first 15 matches.\n",
" idxPairs = cv2.drawMatches(referenceImage_rgb, referenceImagePts, sourceImage_rgb, sourceImagePts, matches[:MIN_MATCHES], 0, flags=2)\n",
" idxPairs = cv2.drawMatches(referenceImage_rgb, referenceImagePts, sourceImage_rgb, sourceImagePts,\n",
" # Mostrar Resultado\n",
" matches[:MIN_MATCHES], 0, flags=2)\n",
" # show result\n",
" plt.figure(figsize=(12, 6))\n",
" plt.figure(figsize=(12, 6))\n",
" plt.axis('off')\n",
" plt.axis('off')\n",
" plt.imshow(cv2.cvtColor(idxPairs, cv2.COLOR_BGR2RGB))\n",
" plt.imshow(cv2.cvtColor(idxPairs, cv2.COLOR_BGR2RGB))\n",
...
@@ -335,36 +329,34 @@
...
@@ -335,36 +329,34 @@
}
}
],
],
"source": [
"source": [
"# Ap
ply the homography transformation if we have enough good matches
\n",
"# Ap
licar Homografia
\n",
"if len(matches) > MIN_MATCHES:\n",
"if len(matches) > MIN_MATCHES:\n",
" #
Get the good key points position
s\n",
" #
Obtener posicion de los puntos de intere
s\n",
" sourcePoints = np.float32([referenceImagePts[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)\n",
" sourcePoints = np.float32([referenceImagePts[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)\n",
" destinationPoints = np.float32([sourceImagePts[m.trainIdx].pt for m in matches ]).reshape(-1, 1, 2)\n",
" destinationPoints = np.float32([sourceImagePts[m.trainIdx].pt for m in matches ]).reshape(-1, 1, 2)\n",
"\n",
"\n",
" #
Obtain the homography matrix
\n",
" #
Obtener la matriz de Homografia
\n",
" homography, mask = cv2.findHomography(sourcePoints, destinationPoints, cv2.RANSAC, 5.0)\n",
" homography, mask = cv2.findHomography(sourcePoints, destinationPoints, cv2.RANSAC, 5.0)\n",
" matchesMask = mask.ravel().tolist()\n",
" matchesMask = mask.ravel().tolist()\n",
"\n",
"\n",
" # Ap
ply the perspective transformation to the source image corners
\n",
" # Ap
licar la transformacion proyectiva a las esquinas de la imagen de referncia
\n",
" h, w = referenceImage.shape\n",
" h, w = referenceImage.shape\n",
" corners = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)\n",
" corners = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)\n",
" transformedCorners = cv2.perspectiveTransform(corners, homography)\n",
" transformedCorners = cv2.perspectiveTransform(corners, homography)\n",
"\n",
"\n",
" # Draw a polygon on the second image joining the transformed corners\n",
" #Dibujar poligono uniendo las esquinas proyectadas\n",
" sourceImageMarker = sourceImage_rgb.copy()\n",
" sourceImageMarker = sourceImage_rgb.copy() \n",
" \n",
" sourceImageMarker = cv2.polylines(sourceImageMarker, [np.int32(transformedCorners)], True, (255,0,0), 5, cv2.LINE_AA)\n",
" sourceImageMarker = cv2.polylines(sourceImageMarker, [np.int32(transformedCorners)], True,\n",
" (255,0,0), 5, cv2.LINE_AA)\n",
" \n",
" \n",
"else:\n",
"else:\n",
" print(\"Not enough matches are found - %d/%d\" % (len(matches), MIN_MATCHES))\n",
" print(\"Not enough matches are found - %d/%d\" % (len(matches), MIN_MATCHES))\n",
" matchesMask = None\n",
" matchesMask = None\n",
"\n",
"\n",
"# D
raw the matche
s\n",
"# D
ibujar Correspondencia
s\n",
"drawParameters = dict(matchColor=(0, 255, 0), singlePointColor=None,matchesMask=matchesMask, flags=2)\n",
"drawParameters = dict(matchColor=(0, 255, 0), singlePointColor=None,matchesMask=matchesMask, flags=2)\n",
"result = cv2.drawMatches(referenceImage_rgb, referenceImagePts, sourceImageMarker, sourceImagePts, matches, None, **drawParameters)\n",
"result = cv2.drawMatches(referenceImage_rgb, referenceImagePts, sourceImageMarker, sourceImagePts, matches, None, **drawParameters)\n",
"print(type(result))\n",
"print(type(result))\n",
"#
Show image
\n",
"#
Mostrar Imagen
\n",
"plt.figure(figsize=(12, 6))\n",
"plt.figure(figsize=(12, 6))\n",
"plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))\n",
"plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))\n",
"plt.show()"
"plt.show()"
...
@@ -414,16 +406,10 @@
...
@@ -414,16 +406,10 @@
"source": [
"source": [
"from objloader_simple import *\n",
"from objloader_simple import *\n",
"import math\n",
"import math\n",
"#
Camera parameters
\n",
"#
Matriz de calibracion de la camara
\n",
"camera_parameters = np.array([[852, 0, 387],\n",
"camera_parameters = np.array([[852, 0, 387],\n",
" [ 0,852, 294],\n",
" [ 0,852, 294],\n",
" [ 0, 0, 1]])\n",
" [ 0, 0, 1]])\n"
"# obtain 3D projection matrix from homography matrix and camera parameters\n",
"#projection = projection_matrix(camera_parameters, homography) \n",
"# Load 3D model from OBJ file\n",
"obj1 = OBJ('../models/chair.obj', swapyz=True)\n",
"#obj = OBJ('../models/knight.obj', swapyz=True)\n",
"\n"
]
]
},
},
{
{
...
@@ -433,7 +419,6 @@
...
@@ -433,7 +419,6 @@
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
"# project cube or model\n",
"def render(img, obj, projection, model, color=False):\n",
"def render(img, obj, projection, model, color=False):\n",
"\n",
"\n",
" vertices = obj.vertices\n",
" vertices = obj.vertices\n",
...
@@ -579,39 +564,6 @@
...
@@ -579,39 +564,6 @@
" plt.imshow(cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB))\n",
" plt.imshow(cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB))\n",
" plt.axis('off')\n"
" plt.axis('off')\n"
]
]
},
{
"cell_type": "raw",
"id": "258fea4c-8ef8-4d65-8a8d-c04188ab7e11",
"metadata": {},
"source": [
"# Defining the dimensions of checkerboard\n",
"CHECKERBOARD = (6,9)\n",
"criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)\n",
"\n",
"# Creating vector to store vectors of 3D points for each checkerboard image\n",
"objpoints = []\n",
"# Creating vector to store vectors of 2D points for each checkerboard image\n",
"imgpoints = [] "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a062d89a-e2d1-4e6f-8360-8806ad65d423",
"metadata": {},
"outputs": [],
"source": [
"# Extracting path of individual image stored in a given directory\n",
"images = glob.glob('../images/*.JPG')\n",
"for fname in images:\n",
" img = cv2.imread(fname)\n",
" gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)\n",
" # Find the chess board corners\n",
" # If desired number of corners are found in the image then ret = true\n",
" ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)\n",
" print(fname, ret)\n"
]
}
}
],
],
"metadata": {
"metadata": {
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment