Tarea 1

parent fd11cd39
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo](https://www.python.org/static/img/python-logo.png)\n",
"\n",
"<h1><center>Tópicos Avanzados de Programación</center></h1>\n",
"\n",
"# 1. Python \n",
"## 1.1 Introduccion"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Python fue creado en 1991 por Guido van Rossum, con la filosofia de crear codigo legible, por lo que la identacion es obligatoria. Su desarrollo esta administrado por **Python Software Foundation** (python.org).\n",
"\n",
"\n",
"Caracteristicas:\n",
"* Alto Nivel\n",
"* Interpretado (Se ejecuta sin compilación previa)\n",
"* Tipificación Dinamica (Se realiza durante en tiempo de ejecución)\n",
"* Multiparadigma\n",
"* Interactivo (con ipython)\n",
"\n",
"*Nota: Python obtiene su nombre del programa de la BBC [Monty Python's Flying Circus](https://www.imdb.com/title/tt0063929/).*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 Tipos de Datos\n",
"#### Numericos\n",
"* int\n",
"* float\n",
"* complex"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"int"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type (1)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"float"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type (1.)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"complex"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type ((1+2j))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Secuencias\n",
"* list\n",
"* tuple \n",
"* range\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"list"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type([1,2,3])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tuple"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type((1,2))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"range"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(range(1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Texto\n",
"* str\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"str"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(\"Hola\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mapeo\n",
"* dict"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type({\"mensaje\":\"hola mundo\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Conjuntos\n",
"* set\n",
"* frozenset"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{1, 2, 3, 5, 6}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"set([1,2,3,1,5,2,6])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 Operadores\n",
"### Comparación \n",
"| Simbolo | Operador |\n",
"|---------|----------|\n",
"| < | menor que |\n",
"| <= | Menor o igual que |\n",
"| >\t| Mayor que |Mayor o igual que | \n",
"| == | Igual |\n",
"| != | Desigual |\n",
"| is | Identidad de Objetos |\n",
"| is not | Identidad Negada de Objetos|\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"6 < 9"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"6 > 9"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"6 == 9"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"6 != 9"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"6 is float(6)\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"6 is int(6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Operaciones\n",
"| Operacion\t| Result |\n",
"|-----------|--------|\n",
"| x + y\t| Suma |\n",
"| x - y\t| Resta |\n",
"| x * y\t| Multiplicacion |\n",
"| x / y\t| Division |\n",
"| x // y | Division (Parte entera) |\n",
"| x % y\t| Modulo|\n",
"| x ** y | x a la potencia y |\n",
"\n",
"### Operador a nivel de bits\n",
"| Operation | Result |\n",
"|-----------|--------|\n",
"| x &#124; y\t| x OR y |\n",
"| x ^ y\t| x XOR y |\n",
"| x & y\t| x AND y |\n",
"| x << n | x desplazado n bits a la izquierda |\n",
"| x >> n | x desplazado n bits a la derecha |\n",
"| ~x | x Negado |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.3 Control de Flujo\n",
"Las estructuruas de control de flijo permiten modificar el flujo de ejecución de las instrucciones de un programa mediante el valor binario de una condicion. Python cuenta con las siguientes estructuras de control:\n",
"\n",
"* if, elif\n",
"* else\n",
"* for\n",
"* while\n",
"* continue\n",
"* break\n",
"* pass\n",
"* try, exeption\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n"
]
}
],
"source": [
"if True:\n",
" print(\"True\")\n",
"else:\n",
" print(\"False\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n",
"2\n",
"3\n",
"4\n"
]
}
],
"source": [
"for i in range(5):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vacio\n"
]
}
],
"source": [
"for i in range(0):\n",
" print(i)\n",
"else:\n",
" print(\"Vacio\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"3\n",
"4\n",
"5\n"
]
}
],
"source": [
"i = 0\n",
"while i < 5:\n",
" i+=1\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n",
"3\n",
"4\n"
]
}
],
"source": [
"for i in range(5):\n",
" if(i==2):\n",
" continue\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n"
]
}
],
"source": [
"for i in range(5):\n",
" if(i==2):\n",
" break\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n",
"2\n",
"3\n",
"4\n"
]
}
],
"source": [
"for i in range(5):\n",
" if(i==2):\n",
" pass\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.5\n",
"0.6666666666666666\n",
"1.0\n",
"2.0\n",
"ERROR\n"
]
}
],
"source": [
"for i in reversed(range(5)):\n",
" try:\n",
" print(2/i)\n",
" except:\n",
" print(\"ERROR\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Todos los objetos de python son considerados verdaders (True) exepto los siguintes:\n",
"* Constantes definidas como: None o False.\n",
"* Cero de cualquier tipo numerico: 0, 0.0, 0j, Decimal(0), Fraction(0, 1)\n",
"* Secuencias y colecciones vacias: '', (), [], {}, set(), range(0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.4 Funciones\n",
"Una función es un conjunto de setencias que pueden ser invocadas varias veces durante la ejecución de un programa. Permiten minimizar el codigo, amuentar su legibilidad y permiten reutilizar código. En python las funciones son definida por la palabra reservada **def**. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello World\n"
]
}
],
"source": [
"def HelloWorld():\n",
" print(\"Hello World\")\n",
"\n",
"HelloWorld()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.4.1 Parametros\n",
"La funciones pueden aceptar arguentos de entrada y devoler resultados."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello Mario\n"
]
}
],
"source": [
"def Hello(name):\n",
" print(\"Hello \"+name)\n",
"Hello(\"Mario\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.4.2 Parametros Opcionales\n",
"Las funciones tampien pueden aceptar parametros opcionales, los cuales toman en valor indicado por defecto si no son pasados a la funcion."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello Mario!!!\n",
"Hello Mario?\n",
"Hello Mario!\n",
"Hello Alex!!\n"
]
},
{
"data": {
"text/plain": [
"[1]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def Hello(name, x=\"!!!\"):\n",
" print(\"Hello \" + name + x)\n",
"Hello(\"Mario\")\n",
"Hello(\"Mario\",\"?\")\n",
"Hello(x=\"!\", name=\"Mario\")\n",
"p = {\"name\":\"Alex\", \"x\":\"!!\"}\n",
"Hello(**p)\n",
"[1,]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.4.3 Desempaquetado"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 1 2\n",
"0 4 5\n",
"[6, 7, 8] 1 2\n",
"6 7 8\n",
"{'a': 9, 'b': 10, 'c': 11} 1 2\n",
"9 10 11\n"
]
}
],
"source": [
"def unpack(a,b=1,c=2):\n",
" print(a,b,c)\n",
"\n",
"l = [6,7,8] \n",
"d = {\"a\":9,\"b\":10,\"c\":11} \n",
"unpack(0)\n",
"unpack(0, 4, 5)\n",
"unpack(l)\n",
"unpack(*l)\n",
"unpack(d)\n",
"unpack(**d)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.5 Ejercicios\n",
"### 1.5.1 Imprimir todos los numeros pares entre 0 y 20 usando *for* o *while*."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"2\n",
"4\n",
"6\n",
"8\n",
"10\n",
"12\n",
"14\n",
"16\n",
"18\n",
"20\n"
]
}
],
"source": [
"for i in range(0,21):\n",
" if(i%2==0):\n",
" print(i)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.2 Imprimir todos los numeros mayores a 10 de la lista A"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"13\n",
"21\n",
"34\n",
"55\n",
"89\n"
]
}
],
"source": [
"A = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]\n",
"\n",
"for i in A:\n",
" if(i>10):\n",
" print(i)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.3 Dadas dos listas A y B, obten una lista con sus elementos comunes (A∩B)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 2, 3, 5, 8, 13]\n"
]
}
],
"source": [
"a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]\n",
"b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]\n",
"\n",
"new = list(set(a) & set(b))\n",
"\n",
"print(new)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.4 Pregunta al usario cuantos numeros de la secuancia Fibonacci quiere calcular y escribe una funcion que calcule la secuencia e imprima el resultado."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Escribe el número de valores en fibonacci100\n",
"0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155 165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073 4807526976 7778742049 12586269025 20365011074 32951280099 53316291173 86267571272 139583862445 225851433717 365435296162 591286729879 956722026041 1548008755920 2504730781961 4052739537881 6557470319842 10610209857723 17167680177565 27777890035288 44945570212853 72723460248141 117669030460994 190392490709135 308061521170129 498454011879264 806515533049393 1304969544928657 2111485077978050 3416454622906707 5527939700884757 8944394323791464 14472334024676221 23416728348467685 37889062373143906 61305790721611591 99194853094755497 160500643816367088 259695496911122585 420196140727489673 679891637638612258 1100087778366101931 1779979416004714189 2880067194370816120 4660046610375530309 7540113804746346429 12200160415121876738 19740274219868223167 31940434634990099905 51680708854858323072 83621143489848422977 135301852344706746049 218922995834555169026 \n"
]
}
],
"source": [
"def fibonacci(n):\n",
" a, b = 0,1\n",
" contador=0\n",
" while contador < n:\n",
" print(a, end=' ')\n",
" a, b = b, a+b\n",
" contador+=1\n",
" print()\n",
" \n",
" pass\n",
"\n",
"n=int(input(\"Escribe el número de valores en fibonacci\"))\n",
"fibonacci(n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.5 Escribe una funcion que sume todos los numeros en una lista usando for."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20\n"
]
}
],
"source": [
"a = [8, 2, 3, 0, 7]\n",
"\n",
"suma=0\n",
"for i in a:\n",
" suma+=i\n",
"\n",
"print(suma)\n",
"suma=0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.6 Escribe una funcion que tome una lista y regrese los elementos unicos en la lista.\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"2\n",
"3\n",
"3\n",
"3\n",
"3\n",
"4\n",
"5\n",
"5\n"
]
}
],
"source": [
"a = [1,2,2,3,3,3,3,4,5,5]\n",
"\n",
"for i in a:\n",
" print(i)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.7 Escribe una funcion que indique si un numero es o no perfecto.\n",
"[Wikipedia:](https://es.wikipedia.org/wiki/N%C3%BAmero_perfecto) *Un número perfecto es un número natural que es igual a la suma de sus divisores propios positivos. Dicho de otra forma, un número perfecto es aquel que es amigo de sí mismo.\n",
"Así, 6 es un número perfecto porque sus divisores propios son 1, 2 y 3; y 6 = 1 + 2 + 3. Los siguientes números perfectos son 28, 496 y 8128.*\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Escribe un numero:3\n",
"No es perfecto\n"
]
}
],
"source": [
"def perfect(x):\n",
" suma=0\n",
" for n in range(1,x):\n",
" if x % n ==0:\n",
" suma +=n\n",
" if(suma==x):\n",
" print(\"Es perfecto\")\n",
" else:\n",
" print(\"No es perfecto\")\n",
" pass\n",
"numero = int(input(\"Escribe un numero:\"))\n",
"perfect(numero)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.8 Escribe una funcion que imprima las prieras *n* filas del triangulo de Pascal.\n",
"[Wolfram](http://mathworld.wolfram.com/PascalsTriangle.html):\n",
"El triángulo de Pascal es un triángulo numérico con números dispuestos en filas escalonadas de manera tal que:\n",
"$a_{nr}=\\frac{n!}{r!(n-r)!}=\\binom{n}{r}$\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def pascal(n):\n",
" pass\n",
"numero = input(\"Indica el numero de filas:\")\n",
"pascal(numero)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.9 Escribe una funcion que indique si una frase es un panagrama.\n",
"[Wikipedia](https://es.wikipedia.org/wiki/Pangrama):Un pangrama (del griego: παν γραμμα, «todas las letras») o frase holoalfabética es un texto que usa todas las letras posibles del alfabeto de un idioma. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.5.10 Escribe un programa que imprima el siguiente un **for** anidado.\n",
"1\n",
"\n",
"22\n",
"\n",
"333\n",
"\n",
"4444\n",
"\n",
"55555\n",
"\n",
"666666\n",
"\n",
"7777777\n",
"\n",
"88888888\n",
"\n",
"999999999"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"1\n",
"\n",
"22\n",
"\n",
"333\n",
"\n",
"4444\n",
"\n",
"55555\n",
"\n",
"666666\n",
"\n",
"7777777\n",
"\n",
"88888888\n",
"\n",
"999999999\n",
"\n"
]
}
],
"source": [
"for i in range(0,10):\n",
" for j in range(0,i):\n",
" print(i, end=\"\")\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment