Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
tap1012
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Mario Chirinos Colunga
tap1012
Commits
71e5c4d0
Commit
71e5c4d0
authored
Mar 23, 2019
by
Victor Hugo Pacheco Flores
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Practica 3 del parcial 2
parent
77cca594
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
82 additions
and
0 deletions
+82
-0
Test2-3.ipynb
Test2-3.ipynb
+82
-0
No files found.
Test2-3.ipynb
0 → 100644
View file @
71e5c4d0
{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFFCAYAAAAdAsFPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4HFWd//H3JwmQABK2iCJLQFAmCjKaAZzBUUAUZhAEwRFcEFB0lMEZHRV/o2zjjIILOuKGLEbUYXPEqCD7JsoStsSAzERQFlHZISBi4Pv745zOrVvp7jp90510cj+v5+nndlWdPnWqum59u845dUoRgZmZWTcTlncBzMxs+DlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDCrkPRrSa9dUdcjaRNJCyVNLEy/t6S782f+st/lsZWHg4WtFJbVSX55k3R+PrFXX09JCkmbRMRdEbFmRDxTmOVngcPyZ24aZNltxTZpeRfAzMpFxO7V6XwFcQnwm4i4awxZbgrM70fZbOXmKwtbqUlaR9KPJN0v6eH8fqPCz06QdISkX0l6UNJZktbNy34s6Z9q6edK2rtDXm+X9Jucz7+VrqfAfwLrAv+Y85qerzIm5enLJX1K0nWSHpP0A0nrSlpN0kJgInCLpF8Vrs/GKQcLW9lNAE4j/YLeBPgjcGLhZ/8JeCPwamBD4GHgy3nZLOBtrYSSXga8APhxPRNJM4CvAm/P+awHVANWt/V0JGkv4D3AmyLiyS5J3wEcDDwfWAT8V0T8KSLWzMtfFhEvbFqfjXMR4ZdfK/wL+DXw2oJ02wIPl+QD3AbsUln2fODPpOrbyaST+pZ52WeBr3TI80jgjMr0GsDTJevpUs4X5vW/qTZ/OhCtzwKXA5+uLJ+R1z0xTwewxfL+/vwa/pevLGylJml1SV/PVUCPAVcCaxf2FtoU+L6kRyQ9QjqpPwNsEBFPAWcCb5M0AdgfOL1DPhsCd7cmIuIJ4MGS9XTYpsnAOcCpEfG9gu24u/L+N8AqwPoFnzNbzMHCVnYfAl4MbB8RawF/m+er4LN3A7tHxNqV1+SIuDcvnwW8FdgFeDIift4hn/uAjVsTklYnVUWVrqfuy8BC4KMF20B13aSquD8DDxR+1gxwsLCVyyqSJldek4DnkNopHsmNxkf1kN/XgP+QtCmApGm5nQCAHByeBT5H56sKSFcBe0jaUdKqwLGM/t/rup4qSQcDewD/EBGLCrfjbZJm5CB1LHBOlHetNQMcLGzlch4pMLReRwNfAKaQfklfA/ykh/y+CMwGLpT0eP789rU03wK2Br7dKZOImA+8H/gu6SrjYeCeHtfT8nFS76f/bXO/xas6fOZ04JvA70htLYd3KqtZJ4rww4/MxkrSO4BDI2LH5V2WdiRdDnw7Ik5e3mWxFZuvLMzGKFfrvA84aXmXxWzQHCzMxkDS64H7gd+TqpfMVmquhjIzs0a+sjAzs0YOFmZm1milGXV2/fXXj+nTpy/vYpiZrVBuuOGGByJiWlO6lSZYTJ8+nTlz5izvYpiZrVAk/aYknauhzMyskYOFmZk1crAwM7NGDhZmZtbIwcLMzBo5WJiZWSMHCzMza+RgYWZmjVaam/LMbEk7zdppua37sgMvW27rtv7zlYWZmTVysDAzs0YOFmZm1sjBwszMGjlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDAzs0YOFmZm1sjBwszMGjlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDAzs0YOFmZm1migwULSbpJul7RA0hFtlq8m6cy8/FpJ0/P8VSTNkjRP0m2SPjbIcpqZWXcDCxaSJgJfBnYHZgD7S5pRS3YI8HBEbAGcAByX5+8HrBYRWwOvAN7TCiRmZrbsDfLKYjtgQUTcERFPA2cAe9XS7AXMyu/PAXaRJCCANSRNAqYATwOPDbCsZmbWxSCDxQuAuyvT9+R5bdNExCLgUWA9UuB4ArgPuAv4bEQ8NMCymplZF8PawL0d8AywIbAZ8CFJm9cTSTpU0hxJc+6///5lXUYzs3FjkMHiXmDjyvRGeV7bNLnKaSrwIHAA8JOI+HNE/AG4GphZX0FEnBQRMyNi5rRp0wawCWZmBoMNFtcDW0raTNKqwFuA2bU0s4ED8/t9gUsjIkhVTzsDSFoD2AH45QDLamZmXQwsWOQ2iMOAC4DbgLMiYr6kYyXtmZOdAqwnaQHwQaDVvfbLwJqS5pOCzmkRMXdQZTUzs+4mDTLziDgPOK8278jK+6dI3WTrn1vYbr6ZmS0fw9rAbWZmQ8TBwszMGjlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDAzs0YOFmZm1sjBwszMGjlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDAzs0YOFmZm1sjBwszMGjlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDAzs0YOFmZm1sjBwszMGjlYmJlZIwcLMzNr5GBhZmaNHCzMzKyRg4WZmTVysDAzs0YOFmZm1sjBwszMGjlYmJlZIwcLMzNr5GBhZmaNBhosJO0m6XZJCyQd0Wb5apLOzMuvlTS9smwbST+XNF/SPEmTB1lWMzPrbGDBQtJE4MvA7sAMYH9JM2rJDgEejogtgBOA4/JnJwHfBt4bES8BXgP8eVBlNTOz7gZ5ZbEdsCAi7oiIp4EzgL1qafYCZuX35wC7SBLwOmBuRNwCEBEPRsQzAyyrmZl1Mchg8QLg7sr0PXle2zQRsQh4FFgPeBEQki6QdKOkj7RbgaRDJc2RNOf+++/v+waYmVkyrA3ck4Adgbfmv3tL2qWeKCJOioiZETFz2rRpy7qMZmbjxiCDxb3AxpXpjfK8tmlyO8VU4EHSVciVEfFARDwJnAe8fIBlNTOzLgYZLK4HtpS0maRVgbcAs2tpZgMH5vf7ApdGRAAXAFtLWj0HkVcDtw6wrGZm1sWkQWUcEYskHUY68U8ETo2I+ZKOBeZExGzgFOB0SQuAh0gBhYh4WNLnSQEngPMi4seDKquZmXVXFCwk7QB8CfgLYFXSyf+JiFir2+ci4jxSFVJ13pGV908B+3X47LdJ3WfNzGw5K62GOhHYH/g/YArwLtI9FGZmNg4Ut1lExAJgYkQ8ExGnAbsNrlhmZjZMStssnsyN1DdLOh64j+HtdmtmZn1WesJ/O6md4jDgCVJ31zcNqlBmZjZciq4sIuI3+e0fgWMGVxwzMxtGXYOFpLMi4s2S5pG6sI4SEdsMrGRmZjY0mq4sPpD/7jHogpiZ2fDqGiwi4r78dgJwX74vAklTgA0GXDYzMxsSpQ3cZwPPVqafyfPMzGwcKA0Wk/IzKQDI71cdTJHMzGzYlAaL+yXt2ZqQtBfwwGCKZGZmw6b0prz3At+RdCIg0gOL3jGwUpmZ2VApvc/iV8AOktbM0wsHWiozMxsqpaPOrka6Y3s6MCk9Jhsi4tiBlczMzIZGaTXUD0jPx74B+NPgimNmZsOoNFhsFBEeZdbMbJwq7Q31M0lbD7QkZmY2tEqvLHYE3inpTlI1lIDw2FBmZuNDabDYfaClMDOzoVZUDZWHKN8Y2Dm/f7L0s2ZmtuIrOuFLOgr4KPCxPGsV4NuDKpSZmQ2X0quDvYE9SU/JIyJ+CzxnUIUyM7PhUhosno6IID8ASdIagyuSmZkNm9JgcZakrwNrS3o3cDHwjcEVy8zMhknp2FCflbQr8BjwYuDIiLhooCUzM7OhUdp1lhwcHCDMzMah0oEEHye3V5AeerQK8ERErDWogpmZ2fAorYZa3PNJacjZvYAdBlUoMzMbLj3fWBfJucDrB1AeMzMbQqXVUPtUJicAM4GnBlIiMzMbOqUN3G+ovF8E/JpUFWVmZuNAaZvFQYMuiJmZDa/SsaFmSVq7Mr2OpFMHVywzMxsmpQ3c20TEI62JiHgY+MvBFMnMzIZNabCYIGmd1oSkdenhhj4zM1uxlZ7wPwf8XNLZeXo/4D8GUyQzMxs2pQ3c35I0B9g5z9onIm4dXLHMzGyY9HJT3rqkIT5OBO6XtFnTByTtJul2SQskHdFm+WqSzszLr5U0vbZ8E0kLJf1rD+U0M7M+G9iT8iRNBL5Men73DGB/STNqyQ4BHo6ILYATgONqyz8PnF9SRjMzG5xBPilvO2BBRNwREU8DZ7DkjXx7AbPy+3OAXfLYU0h6I3AnML+wjGZmNiClDdxPR0RI6uVJeS8A7q5M3wNs3ylNRCyS9CiwnqSnSFcyuwIdq6AkHQocCrDJJpsUboqNVzvN2mm5rfuyAy9bbus264dhfVLe0cAJEbGwW6KIOCkiZkbEzGnTpg2wOGZm49sgn5R3L7BxZXqjPK9dmnskTQKmAg+SrkD2lXQ8sDbwrKSncuO6mZktY43BIjdUXxwRO9Hbk/KuB7bMvabuBd4CHFBLMxs4EPg5sC9waUQE8KrK+o8GFjpQmJktP43BIiKekfSspKkR8WhpxrkN4jDgAmAicGpEzJd0LDAnImYDpwCnS1oAPEQKKGZmNmRKG7gXAvMkXUTuEQUQEYd3+1BEnAecV5t3ZOX9U6S7wbvlcXRhGc3MbEBKg8X/5JeZmY1DXYOFpE0i4q6ImNUtnZmZrdyaus6e23oj6XsDLouZmQ2ppmChyvvNB1kQMzMbXk3BIjq8NzOzcaSpgftlkh4jXWFMye/J0xERaw20dGZmNhS6BouImLisCmJmZsOrl+dZmJnZOOVgYWZmjRwszMyskYOFmZk1crAwM7NGDhZmZtbIwcLMzBo5WJiZWSMHCzMza+RgYWZmjUoffmTWNzvN2ml5F8HMeuQrCzMza+RgYWZmjRwszMyskYOFmZk1crAwM7NGDhZmZtbIwcLMzBo5WJiZWSMHCzMza+RgYWZmjRwszMyskYOFmZk1crAwM7NGDhZmZtbIwcLMzBo5WJiZWSMHCzMza+RgYWZmjRwszMys0UCDhaTdJN0uaYGkI9osX03SmXn5tZKm5/m7SrpB0rz8d+dBltPMzLobWLCQNBH4MrA7MAPYX9KMWrJDgIcjYgvgBOC4PP8B4A0RsTVwIHD6oMppZmbNBnllsR2wICLuiIingTOAvWpp9gJm5ffnALtIUkTcFBG/zfPnA1MkrTbAspqZWReTBpj3C4C7K9P3ANt3ShMRiyQ9CqxHurJoeRNwY0T8qb4CSYcChwJssskmS1XYnWbttFSfH6vLDrxsuax3eW2v2aCNx2N7WZxHhrqBW9JLSFVT72m3PCJOioiZETFz2rRpy7ZwZmbjyCCDxb3AxpXpjfK8tmkkTQKmAg/m6Y2A7wPviIhfDbCcZmbWYJDB4npgS0mbSVoVeAswu5ZmNqkBG2Bf4NKICElrAz8GjoiIqwdYRjMzKzCwYBERi4DDgAuA24CzImK+pGMl7ZmTnQKsJ2kB8EGg1b32MGAL4EhJN+fXcwdVVjMz626QDdxExHnAebV5R1bePwXs1+ZznwQ+OciymZlZuaFu4DYzs+HgYGFmZo0cLMzMrJGDhZmZNXKwMDOzRg4WZmbWaKBdZ63ZeBzHZjwaj9/zeNzmlZmvLMzMrJGDhZmZNXKwMDOzRg4WZmbWyMHCzMwaOViYmVkjBwszM2vkYGFmZo0cLMzMrJGDhZmZNXKwMDOzRg4WZmbWyMHCzMwaOViYmVkjBwszM2vkYGFmZo0cLMzMrJGDhZmZNXKwMDOzRg4WZmbWyMHCzMwaOViYmVkjBwszM2vkYGFmZo0cLMzMrJGDhZmZNXKwMDOzRg4WZmbWyMHCzMwaOViYmVmjgQYLSbtJul3SAklHtFm+mqQz8/JrJU2vLPtYnn+7pNcPspxmZtbdwIKFpInAl4HdgRnA/pJm1JIdAjwcEVsAJwDH5c/OAN4CvATYDfhKzs/MzJaDQV5ZbAcsiIg7IuJp4Axgr1qavYBZ+f05wC6SlOefERF/iog7gQU5PzMzWw4mDTDvFwB3V6bvAbbvlCYiFkl6FFgvz7+m9tkX1Fcg6VDg0Dy5UNLtS1He9YEHlmJ5v9KsbOsZprJ4PSt+WVa29fSlLHqnStbTyaZFqSJiIC9gX+DkyvTbgRNraX4BbFSZ/lXeMScCb6vMPwXYd1BlzeuYszTL+5VmZVvPMJXF61nxy7KyrWdZlmVpX4OshroX2LgyvVGe1zaNpEnAVODBws+amdkyMshgcT2wpaTNJK1KarCeXUszGzgwv98XuDRSmJwNvCX3ltoM2BK4boBlNTOzLgbWZhGpDeIw4AJgInBqRMyXdCzpkmk2qXrpdEkLgIdIAYWc7izgVmAR8P6IeGZQZc1OWsrl/Uqzsq1nmMri9az4ZVnZ1rMsy7JUlOu7zMzMOvId3GZm1sjBwszMGjlYmJlZIweLPpC0qqRtJG2de371LY88/x2SXpunD5B0oqT3S1qlMO/DJW3cnLLnMu8o6YOSXtfj57aT9Ff5/Yycx9+NsQxF+17SWpKeM4b8t5K0i6Q1a/N3G0t5C9c5sOOp3wa9/8dQnsb1NKXpUx7LZP8vU4O+kWOYX8DzgD2BNwDPq8xfHfgI8GFgMvBOUnfe44E1a3n8Peku9MuBK4C7gN17LEfHPIDvAGcCPwROB75PusHxm8CsNnntA3we+Bywd573KPBb4CrgfcC0LmWZDHwQ+B/ge8C/AJPzsusq6d4N3AwcBVwNHFFZth7wJeBG4Abgi8B6edlRpLvz5wCfAi4FPgFcCfxb6XdUuu+BvwLmAb8GfgPcAryizXpeDhwO/BPw8jzvcOB24Nz8+b0q6W/spaxN+6XHbVqirP04JoGDSo6Dfu//pnUV7reS9XRN0488SvZL4b7dnPQ//wDwB+AHwOa9HnP9fC2Xk/QwvIB35S/xm6TxqX4NHJyXnUU62X4FuIR0R/mrgM8Ap9fy+SWwRWX6hcAv8/upwKdzmodINxzeluetXZjH3Px3EvB7YGKeVmtZ5XNfAS4EDsqvn5AGc7yJdBX5OlJ35fvzsgOB59TyOCun2Sm/vgGcnZfdVEl3PTnoAGsA8yrLLiIFgM3y6+PAxXnZPFJX6tWBx4C18vwpbban43fUtN8q8+YCr6pM79hmPUfmch2TX7fkMs8j/zgAppMC3Afq+6KkrE37pXSbOpW1lzy6/E/cVXIcDGD/d11X4X4rWU/XNP3Io/A7LNm315B+FE7Kr7cB1/Z6zPXztdxP2svrRfrFuF5lej3g9vz+5vxXwO8Y6WLc7gR9fW1arXmke0w+yuirlufleRcW5vELYFVgHeBxYN08fzJwW5uDVJXpCaTgdGMt3SqkXyP/DdxfW3Zrm311a/57Sy7HetSGF2B0IPlFmzzmtUlXP+HeXPodNe23TuvI8+r743ZG/5KdkufNr6VbkxRkP99rWZv2S+k2dSprD8fk3A6vecCfSo6DAez/rusq3G8l6+maph95FH6HJft2bps0t/R6zPXzNciBBIfdg6STb8vjed5iERGSzov8TeTp9O1L++RkcySdR/q1EMB+pF/dANMj4rhanr8DjpN0cGEep5CCwETg34CzJd0B7EAaybdqAbAJ6fIY0pApC0jDpVTL8GdStdpsSavX8rhR0g4RcU3ezu1Jv6ghXSndQDr4Q9LzI+K+XJ+vSh4XSnpL3h5Id+dfkN8/LWn1iHgSeEXrA5KmAs/WytL2OyrZb5JentNcIenrpMAYwD+QqgeqfksKvk/l6dXIw8tI2jYibs77baGkPYBTga1LylpL03G/FB4LTWUtyWMD4PXAw7WyCfhZZbrjcTCA/d/tmGvab43raUrTjzxK90vBvl03pzlf6RlAZ1TWc15tv5Ucc30z7m7Kk/TB/HZb0j/8D0hfxl6kaP5OSScD/xwRC2uffSGpnWBHSad1W09EHCTpQuDi/Jnf5zw2ILWB7MroUXnbZBEH589smGf8VtLawGtJVQbX5eU/zNswlVSnel2e3j6/PzQi/rdhv8zLn1kFeDHp8jZII1L+MiLqzyKpfnZ10klobv6MSFVTrZP/BGBhRKwlabWI+FObPNYHnh8R85q+o/y+o7zvL+ueJHaW9KWc1yak/XZRnt6VtN8OBxblAF8v799ExNWFx9PjBful6/EELOxW1ojYp/CYPAU4LSJ+2mabvpu3oetxULiekv3f9Zgj/dhp2m8l6+mahtE/dMaUR07T9B3OpHnf3tmlTBERm5cccw3lGJPxGCyO6rY8Io7p8LlvRcQ7JCkKd5qkdYAjSF/ic/Ps35N+1X86Iuq/7sZE0qu7LY+IKwry2LQhj990W95PY/2OxrCeAxvWM6vb8pzHClPWwvUss+NgmI65UpI2j4g7muZ1+GxftndZHXNLrHe8BYsSkuoDHorUEHUpQETsWUk7mfTEv5eQqgfIaQ5uWMdBEXFafn888Engj6Q68W2Af4mIby/1xoyRpOcyenvu6vHz65AGgKzmcWXfCkj5vpf0923SHFtLsyrwojx5e66q67um/TLW46m2jqXOI+ezI7BlRJyWr/yeE+lhZK3lm5F6ZE2nMs5c9f8jp2u7/yWtFRGPVapeRomIhyp5NB5Phd9z1zQFy2+MiFaVVGveDRFRrVLtuv8lbdJhe0f9j0l6Kekpo9U8vpWXTQSOi4h/bZfXIIy7NgtJX4iIf65U3YySD/SNgfnAyYxcEs4k9ZCqO510yfx64FjgraRG5SbHAK3L1tdFxEck7U3q0bAPqStpT8FC0g6kLoZ/QWoUnwg8ERFr9ZDHnqTt3JDUZW9T0va8pIc83gV8gNRWcjOpfeXnwM6leeR8ppG6MNf/6Vr5NO57SV8j9bzaifR97kttBGNJr2GkN4mAjSUd2EtwKyhr6X7puk2StiR1Oa6fRDYvzaNwe44iHfMvJh2nq5KOx7+pJDuX1Kb2Q5Zsb2rl023/fxfYg9QOVq96CVL30aL9Vvg9d03TbbmkrUjf7dRK2wTAWlS+h6xp//+4sr2TST28bqfyP5b3/2tI3/N5pMdT/xT4FkBEPCOp+l0M3lhaxVfkF7lPNPDqdq+8bAKp7/NFwLZ53h0d8rspKr0XSPWR17TmdXjVe578Iv89Gdgt2vR8KNy2OcAWpK6yE0ndZz/VYx63kHpVtLZrJ+CUHvOYR/onaPUq2wr4nzFsz4WkX2i35e/nVNKvqcZ9X0kzt/Z3TeCqWpobgBdXpl8E3NDPspbul6ZtIp0wdsnH0abA0cCxveRRuD03k05m1d5r9Z6A1xbk07j/+3E8FX7PXdN0W06qSj6N1IB8WuX1X8BfL83+J903c3KbbZ5APg+Q2gQvqqX5KqlK++2kH5j7APv0+n9W+hp3VxYRcUN+u21EfLG6TNIHgCsi4lngBEln57+/p/NVWKu64pF82fg7RtonSnue/EjSL0nVUP+Yf6U+xRhExAJJEyMN6X6apJuAj/WQxZ8j4kFJEyRNiIjLJH2hx2I8FRFPSSI3aP9S0ot7zANSt8BTJH0gUrvLFZKqvUq67fuWP+a/T+aOAg8Cz6+lWSUiFj+SNyL+V4V3x/dQVijbL03bNCUiLsltZ78BjpZ0A+n+i9I8SjwdMar33xpt0nwx/wK+EFjcaSEibqyk6bj/NdLDqK1KPiX7reR7bkrTcXlE/AD4gaRXRsTPu5WbHvd/RNyo1CNqVFkj4llJiyStRbrKr4/CMDmXsXplGqSb/fpu3AWLigNJd4JWvbM6LyLuAfbL9ZiPdcjnpFyf+nFSlF+TkX/cH5Fu6rq5/iFJl1fWc0Rut3g00uXlE6RfMr16Mte935zzu4/eh3R5RKkr7JXAdyT9AXiixzzuUeq1dS5wkaSHGenO24vWP919+Tv4LVCt32637z9Ry+NHuSyfId0BHKQruKo5Sj3gWtV+b2V0181+lBXK9ktrmz7BkscTwJ8kTQD+T+l5MffmNE151PdLk7OUuoiuLendwMGkm8eqtib9qt2ZkWqoYPTJq9v+b1et21LNp2S/lXzPTWlK8nhQ0iXABhHxUknbAHtGxCcrabp+hxrpzQTp//PlpOOlak4uyzdIV74LSVVvIzso4iCWoXHXwC1pf+AA0p2XV1UWrQU8ExG7LMOy7BwRl9bqQBeLiJ5+ISj1tvgD6bL3X0hdab8SEQt6yGMN0lWNSCfNqcB3ImJM/beVempNBX4SEU/3+Nk9SN/RxqS2mLWAYyJidj5h7hsRZ3XLo5bfaqQb2h5tM//9pGOCvM6vRJsuvj2W9eiI+GGH9K39cn700JiuNKbWbcDawL/n9Xwmcp/9nKZ1ZblUJO1KuutfwAURcVFt+QJgRun32mn/91imxuOpZD1NabocK1eQhgH6ekT8ZZ73i4h4aQ/bUO3NtIjUVva9iGhbmyBpOmmkg7m1+RuRjrVW28VVpBEG7iktSy/GY7DYlNSg9ClSt9aWx0l1jIt6zO8/geMj4pE8vQ7woYj4eMFnj4mIo9S+f3ZEj71XholG96SZRrrCurPpc7U8No6Iu2vznhf5vgdJcyJiZofPdgvEQRp+5aetk2q+IvsL0i/k28cQ2P4mIq7uNk/S6RHx9lqaUfNqvzpbHiW1oSxxhdqhLHeQxhw6LSJu7WU7eiHpXNI9PH9os6ztD6CW6g+hXOX3j8Df5lmXA18Hug7mFxEP9bieX5EC69cq834EfL70R5uk6yPiryTdVAkWN0fEtpU0R3bIp94za808f2FlXmnVHJIuInUSOD3Pehvw1ojYtVseYzXugkVL/gXdqhd8EanRrKdfeTmfxQdNZd4S3esGSSM3N7UVEdv0kNc+wHGkOlblV0RvPaoW96SJiBfl+t+zI6Kn3huSFgFnA4dEuuN71L6V9GnSQGtnUqkqyyeRboEYUiP+lIjYNVcbfQ34Vd7ezYD3RMT5PZS1XZfKUfPaTE8kDVsxozLvu6R917oi2YPUmD0974tdgf1qP07OiIjXV/J4DukRxQeRqjlOzWk6VaW2257WjYSQekKtQq1nXa5K3YZ0d3K1zWLPLvs9Jxn5IZSrAFch9UiDVLX1DKkhv9VraBNS259IV1V3RcRmPa7nl6QOHE+Svt+nldr0Zpf+aJN0PnAY6Xh+uaR9Scfn7pU0H6p8fjLpO7wtRrpWVcrrAAASyklEQVTOvpR0gm9VUz4AHBgRv1DBzX+V9YwKUp3m9U0MqOV82F+kesDVgReQLgPPJlW39JrPXGC1yvQUamMKFeSxAakL4vl5egbpACz9/Kb5dXx+bZ1fx5Fu/uulLAuAv1jKfdvYk6Ywn5tIo+TeCLywNa+y/M42r7a91jrkf0r+O6aB93LaVwIfIt2N/8HK62hGerJ8jHTluojU9vUYI0MzfKqW35VURjYm1XdfkY+rW2k/NtES8yrLXk1q13iCdDLeomS7ankIeGP9WKJLj8Ie81+i5191Hqne/u8q07uTqoF6Xc+N+e9HgGtJAWiJ0YMb8ticNCrDk3m//pQ0rE+3z6wGXF6Z/hmwU2X6NcDPxrA9l5CuJibm19uAS3rNp/Q1nhu4FRFPSjqEVD99vKSiy/ya7wCXVH6VHMTIL6RS3yR1w/u3PP2/pF/Lp5R8OPKdn5J2jdFXOR+VdCOjq9ua/D4ieuqT30ZJT5oSERFfkXQL8ENJH6VyBRURm5Vkog43WkXEIXny8RjdrnMHo8fc6WZV0gl9EqOrTR4j9dMnIj4FfErSpyKiqWfac6n8Sic1nG8QEX+U9CfgWUmbRL6BK1erjrqqzFcsf086FqeTGpK/Qxo5+TxGbj4sEunMdG6+YjyiMv8KpeFr/irPui5qVVJKY34dxUgV0xWkrr7VtoBnJL0wIn6VP7M56cqiZYeIeHdlvecrdeAYpdP3XE2S5x2f/y8upNIJoaT6KNKd2q/Nx/SEiCg5TlZn9Phsa0TE4iuIiLi89T/SYzvmwaQ2ixPy9NWk73wgxnWwkPRKUiNu66QxsddMIuK4fDJ7bZ717xFxQbfPtLF+RJwl6WM5z0WSxtJAqWo9uaS/pvfeUHMknUnqeVKtWuilsb2kJ02J1j/31ZJ2IQ3MttXihR3quqNSlaiCm7XoMPBb6x+227bHSDfZb1aC9gTS1cFjeXqriPglaRDIJaonY3RX0+8A10r6QZ5+A/DdfDK5lVR98dPc0CpSADi0luX/AZeR6uerXbTPkfS3FKidrCaQqsaeqqV5M6nn0OW5LF+S9OGIOKeS7FTSyMlvztNvJ/0wqub/YeCy3NYCKcBVT3q/lfRxRvdWG9V7qPB7XhwMIuJiSa8n9Ypsqfb6W1x9VFvPkbXpVn7Vu7yr1cITgWmkzggtd0j6BKPbGlrb/mrSSBFvYEmjusXm423PNukGYjy3WbyaVH1wdT7hb04aPPDwHvOptn28mHTHa689XC4H3kS66eblSndiHxcRr+6xLC8n/SNOzbMeIY1vf2PnTy2RR18a29XQk6Ywj+dHxH2V6UmkG6CuzNNt67oj4l2Vz8yNiG0qf9ckfT+vqqQprvfuUtbvAu8l/SK+ntRL6YsR8RlJJ0XEobk+uvoP12oP2rmW10xGerhcHRFzasvXJ93FDOlmrwdqy9eM2iCYvartk1aPnW9Urxzyj6RdW/OUOjJcHBEvq6RprFdXGh7jQ6Q2ikdI+++EyL2DlIYDqV6dXEnqFVcdDqTj99wK1u0CNSwRrKvlXI107L6mMq9re0ROs2lt3/0+Kh1ncjvTMYzufXd09DhWnJb1MEGDqt8aLy9Gt33cyRjaPkj9rK8m/aNcTaqG2qbHPCYAb87vpwJTx7AtE/PBttz3ay5P17YcGuq68/S1+e81pCFMVgMWDKCsrbuL30qq9lmFJe94nkI6KX6f9Aux+hTC1kOg1u3w2qpyrCzxqq1nMqkr8FdIv+xPBU4dwDbXnykxoc28nwM7Vqb/Bvh5Lc1ZpKuBjg8DKihLx++ZFOQgXW3VX5d2yXOdpmOFWntEnnd6m3RLzCvYpr8nta8c2Xp1OOb2zv8nU9v9T/TrNW6rodr8ygNGj+VTmlWMtH18NcbW9nEr6QTyJKmu/FxSwCgW6crmI8BZMcZ+7JFuCNyfkTrQMSnpSVPom3Rvy2mq64aRG62OJwV2qN1opdQb7qt0v9GqySq5WuyNwIkR8edWm03FLFJbxn/l6QNIY/28mSXHSVpcvDx9Mam66XMdlhePL1VC0n91Wx7pCvwnki4gPdsB2j9z4R+BWbntAlKPpgNraV4ao4fAv0zS4i6/+fv5V5YcsLDdzX9LfM+R2zsiYqdu29Sh+ujYzp8AlmyPgNo4avmK+BXqMB5dS4weoLSkWq01ysAepOD6aKtabBDGbbAgHXwtk0nVQD3dY5H1o+3jW6STyH/m6QNI//D79ZjPxZL+lTZdSXvI42pJJ7bJo7gqKyIWN/QqHb17MVJt0oumtpymum6Az5JOWK8i/cq9ihQYqr6R8/p6Xs/cXK3US7D4Oqmq5hbgylwVUe+q2vGkGBF75L9NjfZ/R+ohtiPpxNNue7aIiP0k7RURs/K2XEVvJpOu5M7M0/uRftQsvos4Ij4s6U2MVJmdFBHfr+UzLyJepjRkBdG++27Tw4/OJnVtPpklfwy0dPyeOzUWV7aj1Q6wR2X2EtVHOa+OASUfp/8PmCKptZ0CngZOIlUVQWqveR4jbTD7kx5dUPXXMVKtdoykzwH1rtw/lHQbqS3pvVqKYYJKjNs2i3YkXRcR2/X4maVu+5B0a+0k0nZeQT53tpkdMXpE0qY8LmszO8ZwxVXPd4n7UQo+czld2nKa6rpzmrNIV2utf8wDSFV0b66kabzRaiwkTYrRddXfJl11VE+K74/0nJSim7Hy9jxGagjvtD3XRcR2kq4kBZbfkXoq9XIcXEOqPlqUp1chDarXU9CXdBfpJHkmqconKsuKHril2hDgHdbT8XsubZNSh6HSKwkfamqPyPl07fWmNjeT1udJujYits/fwz6kbtbzI2KLSpoppCHiX0UKSDeTBiS8jwEYt1cWtQOj1dtjaofkHUXuDVOZvoP0hLVeNP2yKi1LUVfShjy6XqqXUEFPmkIfJI2ts7mkq0m/4vatLG9dkbV6mrS7IutaxZE9oPQUxFZX331J42r1RG26bgLH1k6KP8sn0MUnxZyuOk5St2qmku0pGTOryTqkRvrWVemaed5Iwcpu4NyK9Iv9/cApSndMnxHpSX3VX/Ld/FDS+0hVtdUeetUr5m5XbaXdSW8kDdcy6ua/1upI91jUu8quVan62TIirqW519saqjwwSem5IPXu5Y3Vp4xUa34+Tx9AGtvuzQzAuA0WjK4bbvX2OKRj6g6Wpu2j8CTSS1kau5IW5LEBqTpsw4jYXdIM4JURUXTPR1bt9tfat2MZGLGpLafkxFkSiN9PqibYStK9pI4Kb+2loA11zI0nxVaQzr8Wu1Uzdd0epW67j0XqWXMl+ZkQY/Bp4KZ8fIt0TB1dS3M88Ibocl9OpDvvzyJ1p16HdDK7ApgY5U/Ca7VxfLiaNaO3rfF7VvN9FBcB34+I83L63YE3RsR7quuhc0BZjxRgm9qV/oX07O9q9Wl1HVBWfVpy/PfNuK2G6vRPGR0G8+qST/XyeHHbR0R8pOCzm3Zb3sM/Uyu/xq6kBXmcT25UznXNk0h3CG/dS1n6oUOVy9oRsV9e3q1ap7SKY/GAhOrtRqt6WRu76C7FNk8ljVvVuD05j45jZvVYlueRnuMepGqs39WWXx0FQ7jkqtp/AHYjncDPjIjvLW35ct7Fz45X8zAc8+rHeX2epG/QEFCazi2V6tNWbcZFjK36tOPxX74Hy43nYNH1RLSUeffc9tEPkm6JSh/3TvMa8ljq+nuV9aQpyadtWw6pkbPrCaKXQNyPk2tJHXNhPp22efcOHwGW2J6OY2b1WJY9qdx5HbURdCV9kdRQ2/EGTkm/Jg3bchZpDKbi4e5VcDfz0vzgUu0+CqWeXVcx+ua/v43R426VBJSu7Uol555Ox0E+tosDZD+N52qovlzC9avto09KupI2eULSeozU3+9AGvW0F409aQp1qlporH/v8aqsH73ISuqYS7Td5h635x9I39/7avN7aeD+NGkYj9YJ7XClB//8v0qytUhVhK+rzBt1lzHpfqHiAQxrGu9m7vXqu6be7XV/0s1/38/5X5nnVTXeTU7zuWVpq09L23r6KwZ0A8ewv0hf9g6V6e2Bb40hnztJt+rfQapPv5DKTUjLeJt2If3KuDy/fk1lwLLCPPpxg+A1wKTKdE+P9SQ9UnIu6d6AZ/N23Jnf3zqA/Vb9Dhe/esxjCqlBfokb7pb1NtP+5r8pPeYxl1Ql15qeyNgGg3wRacC71qODtwE+3sPnF99s2ofvubWP5wLzSc9+OaxNujW65LEuqd3lpvz6ArBuLU3Xc0u35cv62O/lNe6qofp9Cdevto9+UEFX0sI8DiPd0PU46WrgSz3mcTupUfyhPL0OKVgUPVq13205Betr9x1+LSL+2PWDo/NorGNu+HzftrmpGqQwj7nAayrf4bqkO5W3qaRpvJlR/XlYUL/aYLp2e1UaS+1k0rhem0h6GWko8/oVWiv9RFJgaY0B1vXcQp+rT5e18Rgs+t2oPLC2j171oyx9yuMgUs+ZUT1pIqLX0XiXiT6dXPtyr0w/9KMsSnfyf5rR3+EREXFmJU1jIOhTG1i/2mB2ILUjPZ6nn0N60t+1efpaUi+22V22p9sYYF3PLU2WZyAoMe7aLAbwhSzT7mvLoCxLnUekp+Odz0hPmo9GrSfNkOnHfuvLvTJ9stRliYj/VropsjX8eLvvcPWIuE6jh5ioj4LQj3tYlroNJvsqqZq15Yn6vIi4u7Y99Ta/GRHxmKS3ku6oPoLURvWZYT/ZL61xFywGYKU6SfQpD4DtSH3EIf2jt30W9ZAY8zarz/fKLI1+lEVL3kzWep7zhpI2jNHDvpQEgqW+h4XUWWKJasIe84BUk7K4KiXSeGrVc+DduSoqlO5Z+gBLjqlVMgbYSsnBYoxWwpNE37ansCfNctenbV4+PVPa60dZSu8kh4ZAoHQPy8yI6PVhQXXtBmCcRe93Kt8h6XBGbm57HyPPkYBUvfRF0gjS95I6q7y/lkfJGGArpXHXZtEvw9QQ1Y+y9LmBdS6wbUQ8m6cnkm7sK34W+LIwTN/hsGnquKHCmxn70Tjdr/YgSc8lBZydSdt0CWkctz90/WBzvqPGAFtZOVhY35X0pLHhVtLoXxII+tE4rWV0p7IKHyak5se3rpQcLKzvSnrS2HAr+TVfEgiURkJe4iQTBSPgDqCb+2TS+G/1E31ruI+bI2JbSXuTqvQ+CFwZo5/813YMsBh5nvtKy20W1neFPWlsuJU0+pf0Ulqaxul+twc1PRSq5GFCJc+ZWCk5WFjf9NiTxoZQj43+JYFgzI3TA2gzanooVMnDhFo3aj4paUPSGGDP73M5h5KDhfVTLz1pbDj18mu+JBAM031IraH6H5H0UtJDoZ5bWX4M6fkdrwLOID1M6I21PPo1BtgKx20W1ndNPWls5VDYrrFMh9HuRtK7gO8BW5Oe774m8ImI+HpeXtKoP4WR50yMq2PbwcL6ruSfzlZ83QJBvxun+1TezSLizk7zCoPfUo0BtiJzNZQNwjBVPVifFbZrDNPNii3fY/RwHwDnAK0HmJU06o/bY9vBwgZhmIZAsf4reUzs0NzQKGkrUnfZqRr9IKW1gMk9NuqP22PbwcL6ZpiGQLHBGaZAUOjFpAC3NqMfpPQ48G7S0B5d+dh2m4X1kYfPsGGWxyfr9WmNrc+O+2PbVxbWN+PhH8ZWaHtLmk/DcB7t+NhOjyw0MxsPXhfpqXZ7kEaO3YL08CYr4GBhZuPFEsN5LM/CrGhcDWVm40XJcB7WgRu4zWxcyHdf/xPp7uunScN5nBwRvT7mdVxysDCzccEjCywdBwszGxf69cS98coN3GY2XtwoaYfWxHi6+7of3MBtZis1333dH66GMrOVmu++7g8HCzMza+Q2CzMza+RgYWZmjRwszLqQ9IykmyX9QtLZklZvSP9rSes3pFnY31KaDZ6DhVl3f4yIbSPipaS7ft+7LFYqyT0Vbag4WJiVu4o0UimSzpV0g6T5kg5tl7hbGkkn5PmX5DGKkHS5pC9ImgN8QNIbJF0r6SZJF0vaYNAbaNaJg4VZgfxLf3dgXp51cES8ApgJHC5pvTYf65RmDWBORLwEuAI4qvKZVSNiZkR8DvgpsENE/CVwBvCRvm+YWSFf6pp1N0XSzfn9VcAp+f3hkvbO7zcGtgQerH22U5pngTPz/G8D/1P5zJmV9xsBZ0p6PrAqcOdSbovZmDlYmHX3x4jYtjpD0muA1wKvjIgnJV0OTO41TUX1ZqcnKu+/BHw+Imbn/I4e81aYLSVXQ5n1birwcA4CWwE79JhmArBvfn8Aqbqp03ruze8PXPpim42dg4VZ734CTMoP0vk0cE2PaZ4AtpP0C2Bn4NgO6zkaOFvSDcADfSq72Zh4uA8zM2vkKwszM2vkYGFmZo0cLMzMrJGDhZmZNXKwMDOzRg4WZmbWyMHCzMwaOViYmVmj/w+oOjlIJ1IvsQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import re\n",
"from operator import itemgetter \n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"frequency = {}\n",
"open_file = open('data/data_named_entity_recognition_sp_MX_locations.JSON', 'r')\n",
"file_to_string = open_file.read()\n",
"words = re.findall(r'(b[A-Za-z][a-z]{2,9}b)', file_to_string)\n",
"\n",
"for word in words:\n",
" count = frequency.get(word,0)\n",
" frequency[word] = count + 1\n",
"values=[] \n",
"for key, value in reversed(sorted(frequency.items(), key = itemgetter(1))):\n",
" values= np.append(values,[[key,value]])\n",
"\n",
"for i in range(len(values)):\n",
" #print(values[i])\n",
" if(i%2!=0):\n",
" x=np.append(values,[int(values[i])])\n",
" \n",
"# the histogram of the data\n",
"patches = plt.hist(x, density=True, facecolor='g', alpha=0.75)\n",
"\n",
"plt.xlabel('Palabra')\n",
"plt.xticks(rotation=90)\n",
"plt.ylabel('Frecuencia')\n",
"plt.title('La ley de Zipf')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment