Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
tap1012
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Mario Chirinos Colunga
tap1012
Commits
83a24718
Commit
83a24718
authored
Mar 12, 2019
by
Carlos David García Hernández
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Matplotlib y palabras1
parent
287eca81
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
0 additions
and
212 deletions
+0
-212
06-LinearAlgebra&Statistics-checkpoint.ipynb
..._checkpoints/06-LinearAlgebra&Statistics-checkpoint.ipynb
+0
-106
06-LinearAlgebra&Statistics.ipynb
06-LinearAlgebra&Statistics.ipynb
+0
-106
No files found.
.ipynb_checkpoints/06-LinearAlgebra&Statistics-checkpoint.ipynb
View file @
83a24718
...
@@ -1619,112 +1619,6 @@
...
@@ -1619,112 +1619,6 @@
"* ¿Las distribuciones son iguales? explique su respuesta justificándola con atributos estadísticos obtenidos con scipy.stats \n"
"* ¿Las distribuciones son iguales? explique su respuesta justificándola con atributos estadísticos obtenidos con scipy.stats \n"
]
]
},
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'X' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-206-3717f3a3c783>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"PDF from Template\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdensity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhist_dist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpdf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'PDF'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'X' is not defined"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABrkAAAJOCAYAAAADEGyXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X+w5Xdd3/HX21wDdoIaTMbaJOTGgo5UW9Musa0VqgWM3THQKZToUMGxpXaGdhzsOLeVgkZtt1hGa2EKmZr+lAbUjmznLoMo4LQ61CxCaYODhriQpBZXE/EHCATe/eOe6Ml1kz17792cfe99PGbu5Jzv9/s5533232c+3291dwAAAAAAAGCSz1r3AAAAAAAAAHCuRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAzqCqvrSq3ltVv1tV/3Dd86xLVd1eVS9f9xwAAAC7iVwAAMAYVXWqqj5eVb9XVR+pqn9fVZctzr2zqv5gEaV+p6reXVVbVfW4pfXfU1WfWqx/6O+7HuHrvivJO7r7Cd39I4/F71ua886l+T69+F0Pvf8nj+Us56Kq3lVVL1z3HAAAwOEgcgEAANN8Y3dfluTPJzmSZHmX0Uu7+wlJvijJdya5OcmJqqqla97Y3Zct/b3qEb7n2iR3PtIQVXXJvn7Fo+juP/PQfEn+e3Z+10Pz/rPz9b0AAACTiFwAAMBI3X1fkrck+fIznPv97n5nkpuS/KUkR8/ls6vq7Um+NslrFrunvmSxa+zfVNWJqvr9JF9bVZ9XVf+xqk5X1Yeq6uVV9VmLz3hxVf18Vf1QVf12Vd1dVX95cfyeqvqNqnrRXn9/Vf29qvpAVd1fVdtVddXi+OOrqqvq26vqg4tdbS9f3H7xF6vqo1X1Y1W1sbj+xqq6q6q+d/FZv1ZVz3+E77yyqt6y+L33V9Wbq+qLFudeneRpSf7t4t/s1YvjX15Vb6+qB6rql6vquXv9zQAAAMtELgAAYKSquibJX0/ynke6prs/nORkkq85l8/u7q/Lw3dQ/cri1Dcn+YEkT0jyP5L86ySfl+SLkzwjybck+dalj/qqJO9L8gVJ3pDk9uyEoCcneWF2Itpl5zJbklTVC5J8R5JvTPKF2fk3+M+7LvtrSf7cYq5XJvmRJM9Pcl2SG5L8zaVrN5NcmuRPJvm7Sf5DVV13hq/+rCSvS/KkxeckyQ8lSXd/Z5I7kvydxb/Zd1bV5yZ5W5IfTXJFdv59bquqJ5/rbwYAANhN5AIAAKb5qar67exEpp9Lcrbb9/3fJE9cev+3FjurHvr7U+fw3W/u7p/v7s8k+VR2bof4j7v7d7v7VJJXJ/nbS9f/Wnf/u+7+dJI3JrkmyS3d/Ynu/ukkn8xO8DpX357k+7v7V7r7U0m+N8lfqaovXLrmWHf/Xne/J8mvJDnR3R/q7vuT/HSS65eufTDJ93b3J7v7Z5L8TJLn7f7S7v5Id7+5uz/e3R9N8s+zE9Eeyd9I8n+6+8e6+9PdfUeS/5aHBzYAAIA92Vj3AAAAAOfouYsQs6qrkvzC0vs3dfcL9/jd9yy9viLJZyf50NKxDy2+7yEfWXr98WQnFO06ds47ubLzvLDXVdVrl449mOTqJB99hO9+tO893d1/sPT+Q0n+WPyrqick+VdJnpnk8xeHP+cscz59ESUfspHkgUdZAwAAsBI7uQAAgIvW4paGfyE7tx48CL30+jezs5vr2qVjT0py3wF916O5J8mLu/vzl/4+p7vfvcfPu6KqHr/0/knZ2QG321Z2QtrTuvtzkzw7SS2d713X35Pkp3fNeVl3f8ce5wQAAPhDIhcAAHDRqao/UVXPSPLmJL+Y5MRBf8fiFoRvSvIDVfWEqro2ycvyx5+NdT68LsnLq+pLk6SqLq+q/dwC8LOT/NOqurSqvi7Js5L85Bmue0KSjyX57aq6IsnLd53/SHaeT/aQn0pyfVW9oKo+e/H5f7GqvmQfswIAACQRuQAAgIvLa6rqd7MTW344O6HmxsUztM6Hf5Dk95PcnZ1nhL0hyW3n6bv+UHf/lySvSfJfq+p3krw3O2Fqr05l53aH/y87839rd999huv+ZXZu0/hb2fm9u+PhDyX5lqp6oKpe1d0PJPn6JN+a5Nezszvs+7MT1QAAAPalunffTQIAAIDDoqpuTPKa7n7yumcBAAA4F3ZyAQAAAAAAMI7IBQAAAAAAwDhuVwgAAAAAAMA4dnIBAAAAAAAwzsa6B9jtiiuu6M3NzXWPAQAAAAAAwGPs3e9+929295WrXHvBRa7Nzc2cPHly3WMAAAAAAADwGKuqD616rdsVAgAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjLOx7gEAAAD4I5tb2/taf+rY0bV8936+FwAAYC/s5AIAAAAAAGAcO7kAAAAO2H53Y01kFxgAAPBYs5MLAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE21j0AAAAAB2dza3vdIwAAADwm7OQCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE21j0AAAAAh9vm1va+1p86dvSAJgEAACaxkwsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE21j0AAADAhWhza3vdIwAAAPAo7OQCAAAAAABgHJELAAAAAACAcVaKXFV1Y1V9oKruqqqtM5x/WVW9v6reV1U/W1XXLp37dFW9d/F3/CCHBwAAAAAA4HA66zO5quqSJK9N8qwk9ya5o6qOd/f7ly57T5Ij3f2xqvr7SV6V5AWLcx/v7q884LkBAAAAAAA4xFbZyXVDkru6++7u/mSS25M8Z/mC7n5Hd39s8fZdSa4+2DEBAAAAAADgj6wSua5Kcs/S+3sXxx7JtyV5y9L7x1fVyap6V1U990wLquoli2tOnj59eoWRAAAAAAAAOMzOervCc1FVL0xyJMkzlg5f2933VdUXJ3l7Vf3v7v7g8rruvjXJrUly5MiRPsiZAAAAAAAAuPisErnuS3LN0vurF8cepqqemeS7kzyjuz/x0PHuvm/x37ur6p1Jrk/ywd3rAQAADtrm1va6RwAAAOA8WeV2hXckeUpVXVdVlya5Ocnx5Quq6vokr09yU3f/xtLxy6vqcYvXVyT56iTvP6jhAQAAAAAAOJzOupOrux+sqpcmeWuSS5Lc1t13VtUtSU529/EkP5jksiQ/XlVJ8uHuvinJlyV5fVV9JjtB7Vh3i1wAAAAAAADsy0rP5OruE0lO7Dr2iqXXz3yEdb+Q5Cv2MyAAAAAAAADstlLkAgAAWBfP1QIAAOBMVnkmFwAAAAAAAFxQRC4AAAAAAADGEbkAAAAAAAAYxzO5AAAAGG0/z207dezoAU4CAAA8luzkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGGdj3QMAAADAumxube957aljRw9wEgAA4FzZyQUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIyzse4BAACAi9vm1va6RwAAAOAiZCcXAAAAAAAA49jJBQAAAHuwn12Kp44dPcBJAADgcLKTCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYZ2PdAwAAAMBhs7m1vee1p44dPcBJAABgLju5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE8kwsAADir/Tw/CAAAAM4HO7kAAAAAAAAYx04uAAA4JOzGAgAA4GJiJxcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADDOxroHAAAAAFa3ubW9r/Wnjh09oEkAAGC97OQCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFWilxVdWNVfaCq7qqqrTOcf1lVvb+q3ldVP1tV1y6de1FV/eri70UHOTwAAAAAAACH01kjV1VdkuS1Sb4hyVOTfFNVPXXXZe9JcqS7/2ySn0jyqsXaJyZ5ZZKvSnJDkldW1eUHNz4AAAAAAACH0So7uW5Icld3393dn0xye5LnLF/Q3e/o7o8t3r4rydWL11+f5G3dfX93P5DkbUluPJjRAQAAAAAAOKxWiVxXJbln6f29i2OP5NuSvOVc1lbVS6rqZFWdPH369AojAQAAAAAAcJit9EyuVVXVC5McSfKD57Kuu2/t7iPdfeTKK688yJEAAAAAAAC4CG2scM19Sa5Zen/14tjDVNUzk3x3kmd09yeW1v7VXWvfuZdBAQCAZHNre90jAAAAwAVhlZ1cdyR5SlVdV1WXJrk5yfHlC6rq+iSvT3JTd//G0qm3Jnl2VV1eVZcnefbiGAAAAAAAAOzZWXdydfeDVfXS7MSpS5Lc1t13VtUtSU529/Hs3J7wsiQ/XlVJ8uHuvqm776+q78tOKEuSW7r7/vPySwAAAAAAADg0VrldYbr7RJITu469Yun1Mx9l7W1JbtvrgAAAAAAAALDbKrcrBAAAAAAAgAuKyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA42ysewAAAADgsbO5tb3ntaeOHT3ASQAAYH/s5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcTbWPQAAABwmm1vb6x4BAAAALgp2cgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjLOx7gEAAACAGTa3tve89tSxowc4CQAA2MkFAAAAAADAQCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjbKx7AAAAmGZza3vdIwAAAMChZycXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMs7HuAQAAAICL3+bW9p7Xnjp29AAnAQDgYmEnFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4G+seAAAA1mFza3vdIwAAAAD7YCcXAAAAAAAA49jJBQAAAFzQ9rv79tSxowc0CQAAFxI7uQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMZZKXJV1Y1V9YGququqts5w/ulV9UtV9WBVPW/XuU9X1XsXf8cPanAAAAAAAAAOr42zXVBVlyR5bZJnJbk3yR1Vdby737902YeTvDjJPzrDR3y8u7/yAGYFAAAAAACAJCtEriQ3JLmru+9Okqq6Pclzkvxh5OruU4tznzkPMwIAAAAAAMDDrHK7wquS3LP0/t7FsVU9vqpOVtW7quq5Z7qgql6yuObk6dOnz+GjAQAAAAAAOIxWeibXPl3b3UeSfHOSH66qP737gu6+tbuPdPeRK6+88jEYCQAAAAAAgMlWiVz3Jblm6f3Vi2Mr6e77Fv+9O8k7k1x/DvMBAAAAAADAH7NK5LojyVOq6rqqujTJzUmOr/LhVXV5VT1u8fqKJF+dpWd5AQAAAAAAwF6cNXJ194NJXprkrUl+OcmbuvvOqrqlqm5Kkqp6WlXdm+T5SV5fVXculn9ZkpNV9b+SvCPJse4WuQAAAAAAANiXjVUu6u4TSU7sOvaKpdd3ZOc2hrvX/UKSr9jnjAAAAAAAAPAwq9yuEAAAAAAAAC4oIhcAAAAAAADjiFwAAAAAAACMs9IzuQAA4EK0ubW97hEAAACANbGTCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYZ2PdAwAAAACcT5tb23tee+rY0QOcBACAg2QnFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA42ysewAAAA63za3tdY8AAAAADGQnFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjbKx7AAAAAIAL1ebW9p7Xnjp29AAnAQBgNzu5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYJyNdQ8AAMBsm1vb6x4BAAAAOITs5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgnI11DwAAAABwMdrc2t7z2lPHjh7gJAAAFyc7uQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYZ2PdAwAAsH6bW9vrHgEAAADgnNjJBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCtFrqq6sao+UFV3VdXWGc4/vap+qaoerKrn7Tr3oqr61cXfiw5qcAAAAAAAAA6vs0auqrokyWuTfEOSpyb5pqp66q7LPpzkxUnesGvtE5O8MslXJbkhySur6vL9jw0AAAAAAMBhtspOrhuS3NXdd3f3J5PcnuQ5yxd096nufl+Sz+xa+/VJ3tbd93f3A0neluTGA5gbAAAAAACAQ2yVyHVVknuW3t+7OLaKldZW1Uuq6mRVnTx9+vSKHw0AAAAAAMBhtbHuAZKku29NcmuSHDlypNc8DgAAAMBabW5t73ntqWNHD3ASAIAL1yo7ue5Lcs3S+6sXx1axn7UAAAAAAABwRqtErjuSPKWqrquqS5PcnOT4ip//1iTPrqrLq+ryJM9eHAMAAAAAAIA9O2vk6u4Hk7w0O3Hql5O8qbvvrKpbquqmJKmqp1XVvUmen+T1VXXnYu39Sb4vO6HsjiS3LI4BAAAAAADAnq30TK7uPpHkxK5jr1h6fUd2bkV4prW3JbltHzMCAAAAAADAw6xyu0IAAAAAAAC4oIhcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIyzse4BAAA4GJtb2+seAQAAAOAxYycXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMs7HuAQAA+CObW9vrHgEAAABgBJELAAAA4CKy3/9p5tSxowc0CQDA+eV2hQAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA42ysewAAAAAALhybW9t7Xnvq2NEDnAQA4NHZyQUAAAAAAMA4IhcAAAAAAADjuF0hAAAAAAfCrQ4BgMeSnVwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAONsrHsAAICLzebW9rpHAAAAALjo2ckFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgb6x4AAAAAADa3tve89tSxowc4CQAwhZ1cAAAAAAAAjCNyAQAAAAAAMI7bFQIA7LKfW+UAAAAA8NiwkwsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhnY90DAACcD5tb2+seAQAAAIDzyE4uAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYJyVIldV3VhVH6iqu6pq6wznH1dVb1yc/59Vtbk4vllVH6+q9y7+Xnew4wMAAAAAAHAYbZztgqq6JMlrkzwryb1J7qiq4939/qXLvi3JA9395Kq6Ocm/SPKCxbkPdvdXHvDcAAAAAAAAHGJnjVxJbkhyV3ffnSRVdXuS5yRZjlzPSfI9i9c/keQ1VVUHOCcAAAAAnNHm1vae1546dvQAJwEAHkur3K7wqiT3LL2/d3HsjNd094NJPprkCxbnrquq91TVz1XV15zpC6rqJVV1sqpOnj59+px+AAAAAAAAAIfPSs/k2odfT/Kk7r4+ycuSvKGqPnf3Rd19a3cf6e4jV1555XkeCQAAAAAAgOlWiVz3Jblm6f3Vi2NnvKaqNpJ8XpLf6u5PdPdvJUl3vzvJB5N8yX6HBgAAAAAA4HBbJXLdkeQpVXVdVV2a5OYkx3ddczzJixavn5fk7d3dVXVlVV2SJFX1xUmekuTugxkdAAAAAACAw2rjbBd094NV9dIkb01ySZLbuvvOqrolycnuPp7kR5P8p6q6K8n92QlhSfL0JLdU1aeSfCbJt3f3/efjhwAAAAAAAHB4nDVyJUl3n0hyYtexVyy9/oMkzz/Dup9M8pP7nBEAAAAAAAAeZpXbFQIA8P/bu98QS8+zDODX3R0ToWKLBpFmgxMxUVK12NqoFMVSleiU5ovQFZSqhWJpY4WCTFoK4qepihpov5QkghoIJVZdXDVtqfjJpKnVWpNYWeJgNii11f6j0LDp7YdzCtvdmd3Zzsk+88z5/T7NOec9u9cs+zBz3uu9nxcAAACAI0XJBQAAAAAAwHQOtF0hAMAIm9tnRkcAAAAA4IgyyQUAAAAAAMB0lFwAAAAAAABMR8kFAACQGZ17AAAJ90lEQVQAAADAdJRcAAAAAAAATEfJBQAAAAAAwHSUXAAAAAAAAExHyQUAAAAAAMB0NkYHAAAAAIBRNrfPHOr9uztbK0oCAFwtk1wAAAAAAABMR8kFAAAAAADAdJRcAAAAAAAATEfJBQAAAAAAwHQ2RgcAAI63w97IGwAAAAD2YpILAAAAAACA6Si5AAAAAAAAmI6SCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDpKLkAAAAAAACYzsboAAAAAAAwq83tM9/we3d3tlaYBADWj0kuAAAAAAAApqPkAgAAAAAAYDpKLgAAAAAAAKaj5AIAAAAAAGA6Si4AAAAAAACmo+QCAAAAAABgOkouAAAAAAAApqPkAgAAAAAAYDpKLgAAAAAAAKazMToAAHC0bW6fGR0BAAAAAC5hkgsAAAAAAIDpmOQCAAAAgAEOs2vC7s7WCpMAwJxMcgEAAAAAADAdJRcAAAAAAADTUXIBAAAAAAAwHffkAoA1cJi9/gEAgKPH/bwAwCQXAAAAAAAAE1JyAQAAAAAAMB0lFwAAAAAAANNRcgEAAAAAADAdJRcAAAAAAADTUXIBAAAAAAAwHSUXAAAAAAAA01FyAQAAAAAAMB0lFwAAAAAAANNRcgEAAAAAADCdjdEBAAAAAIBrZ3P7zKHev7uztaIkAHA4Si4AmMRhP4gCAAAAwHFiu0IAAAAAAACmo+QCAAAAAABgOkouAAAAAAAApqPkAgAAAAAAYDobowMAwDrZ3D4zOgIAAAAAHAsmuQAAAAAAAJiOkgsAAAAAAIDpKLkAAAAAAACYjntyAQAAAAAHdph7De/ubK0wCQDrziQXAAAAAAAA0zHJBQBX6TBXLQIAAAAAq2GSCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDpuCcXAAAAAHBNHOYex7s7WytMAsBxYJILAAAAAACA6Si5AAAAAAAAmI6SCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDpbIwOAADX2ub2mdERAAAAuEqH+Sy3u7O1wiQAHBUmuQAAAAAAAJiOkgsAAAAAAIDpKLkAAAAAAACYjntyATAl99UCAAAAgPWm5AJgGEUVAAAA18JhPn/u7mytMAkAq6TkAuBQFFUAAAAAwAjuyQUAAAAAAMB0lFwAAAAAAABMx3aFAAAAAAD7GLlNv/uBAVyeSS4AAAAAAACmY5ILAAAAAOAIOswUmSkwYB0ouQDW3MhtFwAAAAAAvlFKLgAAAACAY8YUGLAOlFwAx4BpLAAAAABg3bxgdAAAAAAAAAC4Wia5AFbIRBUAAAAwu5HnN2yVCFwNJRfARRRVAAAAAABH34FKrqq6I8k9SU4kube7dy56/fokf5zkFUk+m+T13b27fO3uJG9M8lySX+/uh1eWHmAPSioAAACAOY06r2OCDOZ0xZKrqk4keW+Sn05yLsljVXW6u5+44LA3Jvm/7v6eqjqV5N1JXl9VtyU5leSlSV6S5MNVdWt3P7fqbwTY32F+ORj1A15RBQAAAMC1MuP5M+Bgk1y3Jznb3U8lSVU9mOTOJBeWXHcm+a3l1w8leU9V1fL5B7v7K0n+o6rOLv+8f1hNfLi21rF4WcfvGQAAAAAOah3Pn40s9mb891aEPn8OUnLdmOTpCx6fS/Ij+x3T3eer6vNJvn35/CMXvffGi/+CqnpTkjctH36pqj51oPRwMDck+czoEMCBWK8wD+sV5mG9wjysV5iH9cpaq3ePTnDVhq7ZCf+9Rvuugx54oHtyPd+6+31J3jc6B8dTVX2su394dA7gyqxXmIf1CvOwXmEe1ivMw3qFuVizx9cLDnDMM0luuuDxyeVzex5TVRtJXpTkswd8LwAAAAAAAFyVg5RcjyW5papurqrrkpxKcvqiY04necPy659P8pHu7uXzp6rq+qq6OcktST66mugAAAAAAACsqytuV7i8x9Zbkzyc5ESS+7v78ar67SQf6+7TSe5L8idVdTbJ/2ZRhGV53PuTPJHkfJK3dPdzz9P3AvuxFSbMw3qFeVivMA/rFeZhvcI8rFeYizV7TNVi4AoAAAAAAADmcZDtCgEAAAAAAOBIUXIBAAAAAAAwHSUXa6Gq7qqqf6uqx6vqd0bnAa6sqt5eVV1VN4zOAuytqn53+fP1X6rqz6vqxaMzAV+vqu6oqk9V1dmq2h6dB9hbVd1UVX9XVU8sP7e+bXQm4PKq6kRV/VNV/dXoLMD+qurFVfXQ8rPrk1X1Y6MzsVpKLo69qnp1kjuTvKy7X5rk9wZHAq6gqm5K8jNJ/nN0FuCyPpTk+7v7B5P8e5K7B+cBLlBVJ5K8N8nPJrktyS9U1W1jUwH7OJ/k7d19W5IfTfIW6xWOvLcleXJ0COCK7knyt939fUleFuv22FFysQ7enGSnu7+SJN396cF5gCv7gyS/maRHBwH2190f7O7zy4ePJDk5Mg9widuTnO3up7r72SQPZnHxF3DEdPd/dffHl19/MYsTcDeOTQXsp6pOJtlKcu/oLMD+qupFSX4iyX1J0t3PdvfnxqZi1ZRcrINbk/x4VT1aVX9fVa8cHQjYX1XdmeSZ7v7E6CzAVfnVJH8zOgTwdW5M8vQFj8/FSXM48qpqM8kPJXl0bBLgMv4wiwszvzo6CHBZNyf5nyR/tNxe9N6qeuHoUKzWxugAsApV9eEk37nHS+/M4v/5t2Wx5cMrk7y/qr67u02IwCBXWLPvyGKrQuAIuNx67e6/XB7zziy2WXrgWmYDgOOmqr4lyZ8l+Y3u/sLoPMClquq1ST7d3f9YVT85Og9wWRtJXp7kru5+tKruSbKd5F1jY7FKSi6Ohe7+qf1eq6o3J/nAstT6aFV9NckNWbT4wAD7rdmq+oEsrrL5RFUli63PPl5Vt3f3f1/DiMDS5X7GJklV/XKS1yZ5jQtI4Mh5JslNFzw+uXwOOIKq6puyKLge6O4PjM4D7OtVSV5XVT+X5JuTfGtV/Wl3/+LgXMClziU5191fm45+KIuSi2PEdoWsg79I8uokqapbk1yX5DNDEwF76u5Pdvd3dPdmd29m8cvIyxVccDRV1R1ZbNPyuu7+8ug8wCUeS3JLVd1cVdclOZXk9OBMwB5qcYXXfUme7O7fH50H2F93393dJ5efWU8l+YiCC46m5fmkp6vqe5dPvSbJEwMj8TwwycU6uD/J/VX1r0meTfIGV5oDwEq8J8n1ST60nL58pLt/bWwk4Gu6+3xVvTXJw0lOJLm/ux8fHAvY26uS/FKST1bVPy+fe0d3//XATABwHNyV5IHlRV9PJfmVwXlYsXKuHwAAAAAAgNnYrhAAAAAAAIDpKLkAAAAAAACYjpILAAAAAACA6Si5AAAAAAAAmI6SCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDp/D8xmog4qTIBTQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 2160x720 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy import stats\n",
"\n",
"data = stats.norm.rvs(size=100000, loc=0, scale=1.5, random_state=123)\n",
"hist = np.histogram(data, bins=100)\n",
"hist_dist = stats.rv_histogram(hist)\n",
"\n",
"plt.title(\"PDF from Template\")\n",
"plt.hist(data, density=True, bins=100)\n",
"plt.plot(X, hist_dist.pdf(X), label='PDF')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 274,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[355,\n",
" 230,\n",
" 188,\n",
" 187,\n",
" 168,\n",
" 165,\n",
" 159,\n",
" 136,\n",
" 122,\n",
" 116,\n",
" 110,\n",
" 108,\n",
" 79,\n",
" 68,\n",
" 62,\n",
" 35,\n",
" 34,\n",
" 27,\n",
" 26,\n",
" 25,\n",
" 24,\n",
" 20,\n",
" 18,\n",
" 14,\n",
" 14,\n",
" 12,\n",
" 8,\n",
" 7,\n",
" 5,\n",
" 4,\n",
" 4,\n",
" 4,\n",
" 4,\n",
" 4,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 2,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1]"
]
},
"execution_count": 274,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[1]"
]
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 319,
"execution_count": 319,
...
...
06-LinearAlgebra&Statistics.ipynb
View file @
83a24718
...
@@ -1619,112 +1619,6 @@
...
@@ -1619,112 +1619,6 @@
"* ¿Las distribuciones son iguales? explique su respuesta justificándola con atributos estadísticos obtenidos con scipy.stats \n"
"* ¿Las distribuciones son iguales? explique su respuesta justificándola con atributos estadísticos obtenidos con scipy.stats \n"
]
]
},
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'X' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-206-3717f3a3c783>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"PDF from Template\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdensity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhist_dist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpdf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'PDF'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'X' is not defined"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABrkAAAJOCAYAAAADEGyXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X+w5Xdd3/HX21wDdoIaTMbaJOTGgo5UW9Musa0VqgWM3THQKZToUMGxpXaGdhzsOLeVgkZtt1hGa2EKmZr+lAbUjmznLoMo4LQ61CxCaYODhriQpBZXE/EHCATe/eOe6Ml1kz17792cfe99PGbu5Jzv9/s5533232c+3291dwAAAAAAAGCSz1r3AAAAAAAAAHCuRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAzqCqvrSq3ltVv1tV/3Dd86xLVd1eVS9f9xwAAAC7iVwAAMAYVXWqqj5eVb9XVR+pqn9fVZctzr2zqv5gEaV+p6reXVVbVfW4pfXfU1WfWqx/6O+7HuHrvivJO7r7Cd39I4/F71ua886l+T69+F0Pvf8nj+Us56Kq3lVVL1z3HAAAwOEgcgEAANN8Y3dfluTPJzmSZHmX0Uu7+wlJvijJdya5OcmJqqqla97Y3Zct/b3qEb7n2iR3PtIQVXXJvn7Fo+juP/PQfEn+e3Z+10Pz/rPz9b0AAACTiFwAAMBI3X1fkrck+fIznPv97n5nkpuS/KUkR8/ls6vq7Um+NslrFrunvmSxa+zfVNWJqvr9JF9bVZ9XVf+xqk5X1Yeq6uVV9VmLz3hxVf18Vf1QVf12Vd1dVX95cfyeqvqNqnrRXn9/Vf29qvpAVd1fVdtVddXi+OOrqqvq26vqg4tdbS9f3H7xF6vqo1X1Y1W1sbj+xqq6q6q+d/FZv1ZVz3+E77yyqt6y+L33V9Wbq+qLFudeneRpSf7t4t/s1YvjX15Vb6+qB6rql6vquXv9zQAAAMtELgAAYKSquibJX0/ynke6prs/nORkkq85l8/u7q/Lw3dQ/cri1Dcn+YEkT0jyP5L86ySfl+SLkzwjybck+dalj/qqJO9L8gVJ3pDk9uyEoCcneWF2Itpl5zJbklTVC5J8R5JvTPKF2fk3+M+7LvtrSf7cYq5XJvmRJM9Pcl2SG5L8zaVrN5NcmuRPJvm7Sf5DVV13hq/+rCSvS/KkxeckyQ8lSXd/Z5I7kvydxb/Zd1bV5yZ5W5IfTXJFdv59bquqJ5/rbwYAANhN5AIAAKb5qar67exEpp9Lcrbb9/3fJE9cev+3FjurHvr7U+fw3W/u7p/v7s8k+VR2bof4j7v7d7v7VJJXJ/nbS9f/Wnf/u+7+dJI3JrkmyS3d/Ynu/ukkn8xO8DpX357k+7v7V7r7U0m+N8lfqaovXLrmWHf/Xne/J8mvJDnR3R/q7vuT/HSS65eufTDJ93b3J7v7Z5L8TJLn7f7S7v5Id7+5uz/e3R9N8s+zE9Eeyd9I8n+6+8e6+9PdfUeS/5aHBzYAAIA92Vj3AAAAAOfouYsQs6qrkvzC0vs3dfcL9/jd9yy9viLJZyf50NKxDy2+7yEfWXr98WQnFO06ds47ubLzvLDXVdVrl449mOTqJB99hO9+tO893d1/sPT+Q0n+WPyrqick+VdJnpnk8xeHP+cscz59ESUfspHkgUdZAwAAsBI7uQAAgIvW4paGfyE7tx48CL30+jezs5vr2qVjT0py3wF916O5J8mLu/vzl/4+p7vfvcfPu6KqHr/0/knZ2QG321Z2QtrTuvtzkzw7SS2d713X35Pkp3fNeVl3f8ce5wQAAPhDIhcAAHDRqao/UVXPSPLmJL+Y5MRBf8fiFoRvSvIDVfWEqro2ycvyx5+NdT68LsnLq+pLk6SqLq+q/dwC8LOT/NOqurSqvi7Js5L85Bmue0KSjyX57aq6IsnLd53/SHaeT/aQn0pyfVW9oKo+e/H5f7GqvmQfswIAACQRuQAAgIvLa6rqd7MTW344O6HmxsUztM6Hf5Dk95PcnZ1nhL0hyW3n6bv+UHf/lySvSfJfq+p3krw3O2Fqr05l53aH/y87839rd999huv+ZXZu0/hb2fm9u+PhDyX5lqp6oKpe1d0PJPn6JN+a5Nezszvs+7MT1QAAAPalunffTQIAAIDDoqpuTPKa7n7yumcBAAA4F3ZyAQAAAAAAMI7IBQAAAAAAwDhuVwgAAAAAAMA4dnIBAAAAAAAwzsa6B9jtiiuu6M3NzXWPAQAAAAAAwGPs3e9+929295WrXHvBRa7Nzc2cPHly3WMAAAAAAADwGKuqD616rdsVAgAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjLOx7gEAAAD4I5tb2/taf+rY0bV8936+FwAAYC/s5AIAAAAAAGAcO7kAAAAO2H53Y01kFxgAAPBYs5MLAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE21j0AAAAAB2dza3vdIwAAADwm7OQCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE21j0AAAAAh9vm1va+1p86dvSAJgEAACaxkwsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE21j0AAADAhWhza3vdIwAAAPAo7OQCAAAAAABgHJELAAAAAACAcVaKXFV1Y1V9oKruqqqtM5x/WVW9v6reV1U/W1XXLp37dFW9d/F3/CCHBwAAAAAA4HA66zO5quqSJK9N8qwk9ya5o6qOd/f7ly57T5Ij3f2xqvr7SV6V5AWLcx/v7q884LkBAAAAAAA4xFbZyXVDkru6++7u/mSS25M8Z/mC7n5Hd39s8fZdSa4+2DEBAAAAAADgj6wSua5Kcs/S+3sXxx7JtyV5y9L7x1fVyap6V1U990wLquoli2tOnj59eoWRAAAAAAAAOMzOervCc1FVL0xyJMkzlg5f2933VdUXJ3l7Vf3v7v7g8rruvjXJrUly5MiRPsiZAAAAAAAAuPisErnuS3LN0vurF8cepqqemeS7kzyjuz/x0PHuvm/x37ur6p1Jrk/ywd3rAQAADtrm1va6RwAAAOA8WeV2hXckeUpVXVdVlya5Ocnx5Quq6vokr09yU3f/xtLxy6vqcYvXVyT56iTvP6jhAQAAAAAAOJzOupOrux+sqpcmeWuSS5Lc1t13VtUtSU529/EkP5jksiQ/XlVJ8uHuvinJlyV5fVV9JjtB7Vh3i1wAAAAAAADsy0rP5OruE0lO7Dr2iqXXz3yEdb+Q5Cv2MyAAAAAAAADstlLkAgAAWBfP1QIAAOBMVnkmFwAAAAAAAFxQRC4AAAAAAADGEbkAAAAAAAAYxzO5AAAAGG0/z207dezoAU4CAAA8luzkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGGdj3QMAAADAumxube957aljRw9wEgAA4FzZyQUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIyzse4BAACAi9vm1va6RwAAAOAiZCcXAAAAAAAA49jJBQAAAHuwn12Kp44dPcBJAADgcLKTCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYZ2PdAwAAAMBhs7m1vee1p44dPcBJAABgLju5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHE8kwsAADir/Tw/CAAAAM4HO7kAAAAAAAAYx04uAAA4JOzGAgAA4GJiJxcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADDOxroHAAAAAFa3ubW9r/Wnjh09oEkAAGC97OQCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFWilxVdWNVfaCq7qqqrTOcf1lVvb+q3ldVP1tV1y6de1FV/eri70UHOTwAAAAAAACH01kjV1VdkuS1Sb4hyVOTfFNVPXXXZe9JcqS7/2ySn0jyqsXaJyZ5ZZKvSnJDkldW1eUHNz4AAAAAAACH0So7uW5Icld3393dn0xye5LnLF/Q3e/o7o8t3r4rydWL11+f5G3dfX93P5DkbUluPJjRAQAAAAAAOKxWiVxXJbln6f29i2OP5NuSvOVc1lbVS6rqZFWdPH369AojAQAAAAAAcJit9EyuVVXVC5McSfKD57Kuu2/t7iPdfeTKK688yJEAAAAAAAC4CG2scM19Sa5Zen/14tjDVNUzk3x3kmd09yeW1v7VXWvfuZdBAQCAZHNre90jAAAAwAVhlZ1cdyR5SlVdV1WXJrk5yfHlC6rq+iSvT3JTd//G0qm3Jnl2VV1eVZcnefbiGAAAAAAAAOzZWXdydfeDVfXS7MSpS5Lc1t13VtUtSU529/Hs3J7wsiQ/XlVJ8uHuvqm776+q78tOKEuSW7r7/vPySwAAAAAAADg0VrldYbr7RJITu469Yun1Mx9l7W1JbtvrgAAAAAAAALDbKrcrBAAAAAAAgAuKyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA42ysewAAAADgsbO5tb3ntaeOHT3ASQAAYH/s5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcTbWPQAAABwmm1vb6x4BAAAALgp2cgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjLOx7gEAAACAGTa3tve89tSxowc4CQAA2MkFAAAAAADAQCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjbKx7AAAAmGZza3vdIwAAAMChZycXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMs7HuAQAAAICL3+bW9p7Xnjp29AAnAQDgYmEnFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4G+seAAAA1mFza3vdIwAAAAD7YCcXAAAAAAAA49jJBQAAAFzQ9rv79tSxowc0CQAAFxI7uQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMZZKXJV1Y1V9YGququqts5w/ulV9UtV9WBVPW/XuU9X1XsXf8cPanAAAAAAAAAOr42zXVBVlyR5bZJnJbk3yR1Vdby737902YeTvDjJPzrDR3y8u7/yAGYFAAAAAACAJCtEriQ3JLmru+9Okqq6Pclzkvxh5OruU4tznzkPMwIAAAAAAMDDrHK7wquS3LP0/t7FsVU9vqpOVtW7quq5Z7qgql6yuObk6dOnz+GjAQAAAAAAOIxWeibXPl3b3UeSfHOSH66qP737gu6+tbuPdPeRK6+88jEYCQAAAAAAgMlWiVz3Jblm6f3Vi2Mr6e77Fv+9O8k7k1x/DvMBAAAAAADAH7NK5LojyVOq6rqqujTJzUmOr/LhVXV5VT1u8fqKJF+dpWd5AQAAAAAAwF6cNXJ194NJXprkrUl+OcmbuvvOqrqlqm5Kkqp6WlXdm+T5SV5fVXculn9ZkpNV9b+SvCPJse4WuQAAAAAAANiXjVUu6u4TSU7sOvaKpdd3ZOc2hrvX/UKSr9jnjAAAAAAAAPAwq9yuEAAAAAAAAC4oIhcAAAAAAADjiFwAAAAAAACMs9IzuQAA4EK0ubW97hEAAACANbGTCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYZ2PdAwAAAACcT5tb23tee+rY0QOcBACAg2QnFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA42ysewAAAA63za3tdY8AAAAADGQnFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjbKx7AAAAAIAL1ebW9p7Xnjp29AAnAQBgNzu5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYJyNdQ8AAMBsm1vb6x4BAAAAOITs5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgnI11DwAAAABwMdrc2t7z2lPHjh7gJAAAFyc7uQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhH5AIAAAAAAGAckQsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYZ2PdAwAAsH6bW9vrHgEAAADgnNjJBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCtFrqq6sao+UFV3VdXWGc4/vap+qaoerKrn7Tr3oqr61cXfiw5qcAAAAAAAAA6vs0auqrokyWuTfEOSpyb5pqp66q7LPpzkxUnesGvtE5O8MslXJbkhySur6vL9jw0AAAAAAMBhtspOrhuS3NXdd3f3J5PcnuQ5yxd096nufl+Sz+xa+/VJ3tbd93f3A0neluTGA5gbAAAAAACAQ2yVyHVVknuW3t+7OLaKldZW1Uuq6mRVnTx9+vSKHw0AAAAAAMBhtbHuAZKku29NcmuSHDlypNc8DgAAAMBabW5t73ntqWNHD3ASAIAL1yo7ue5Lcs3S+6sXx1axn7UAAAAAAABwRqtErjuSPKWqrquqS5PcnOT4ip//1iTPrqrLq+ryJM9eHAMAAAAAAIA9O2vk6u4Hk7w0O3Hql5O8qbvvrKpbquqmJKmqp1XVvUmen+T1VXXnYu39Sb4vO6HsjiS3LI4BAAAAAADAnq30TK7uPpHkxK5jr1h6fUd2bkV4prW3JbltHzMCAAAAAADAw6xyu0IAAAAAAAC4oIhcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIyzse4BAAA4GJtb2+seAQAAAOAxYycXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMs7HuAQAA+CObW9vrHgEAAABgBJELAAAA4CKy3/9p5tSxowc0CQDA+eV2hQAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA42ysewAAAAAALhybW9t7Xnvq2NEDnAQA4NHZyQUAAAAAAMA4IhcAAAAAAADjuF0hAAAAAAfCrQ4BgMeSnVwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAONsrHsAAICLzebW9rpHAAAAALjo2ckFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgiFwAAAAAAAOOIXAAAAAAAAIwjcgEAAAAAADCOyAUAAAAAAMA4IhcAAAAAAADjiFwAAAAAAACMI3IBAAAAAAAwjsgFAAAAAADAOCIXAAAAAAAA44hcAAAAAAAAjCNyAQAAAAAAMI7IBQAAAAAAwDgb6x4AAAAAADa3tve89tSxowc4CQAwhZ1cAAAAAAAAjCNyAQAAAAAAMI7bFQIA7LKfW+UAAAAA8NiwkwsAAAAAAIBxRC4AAAAAAADGEbkAAAAAAAAYR+QCAAAAAABgHJELAAAAAACAcUQuAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYByRCwAAAAAAgHFELgAAAAAAAMYRuQAAAAAAABhnY90DAACcD5tb2+seAQAAAIDzyE4uAAAAAAAAxhG5AAAAAAAAGEfkAgAAAAAAYJyVIldV3VhVH6iqu6pq6wznH1dVb1yc/59Vtbk4vllVH6+q9y7+Xnew4wMAAAAAAHAYbZztgqq6JMlrkzwryb1J7qiq4939/qXLvi3JA9395Kq6Ocm/SPKCxbkPdvdXHvDcAAAAAAAAHGJnjVxJbkhyV3ffnSRVdXuS5yRZjlzPSfI9i9c/keQ1VVUHOCcAAAAAnNHm1vae1546dvQAJwEAHkur3K7wqiT3LL2/d3HsjNd094NJPprkCxbnrquq91TVz1XV15zpC6rqJVV1sqpOnj59+px+AAAAAAAAAIfPSs/k2odfT/Kk7r4+ycuSvKGqPnf3Rd19a3cf6e4jV1555XkeCQAAAAAAgOlWiVz3Jblm6f3Vi2NnvKaqNpJ8XpLf6u5PdPdvJUl3vzvJB5N8yX6HBgAAAAAA4HBbJXLdkeQpVXVdVV2a5OYkx3ddczzJixavn5fk7d3dVXVlVV2SJFX1xUmekuTugxkdAAAAAACAw2rjbBd094NV9dIkb01ySZLbuvvOqrolycnuPp7kR5P8p6q6K8n92QlhSfL0JLdU1aeSfCbJt3f3/efjhwAAAAAAAHB4nDVyJUl3n0hyYtexVyy9/oMkzz/Dup9M8pP7nBEAAAAAAAAeZpXbFQIA8P/bu98QS8+zDODX3R0ToWKLBpFmgxMxUVK12NqoFMVSleiU5ovQFZSqhWJpY4WCTFoK4qepihpov5QkghoIJVZdXDVtqfjJpKnVWpNYWeJgNii11f6j0LDp7YdzCtvdmd3Zzsk+88z5/T7NOec9u9cs+zBz3uu9nxcAAACAI0XJBQAAAAAAwHQOtF0hAMAIm9tnRkcAAAAA4IgyyQUAAAAAAMB0lFwAAAAAAABMR8kFAACQGZ17AAAJ90lEQVQAAADAdJRcAAAAAAAATEfJBQAAAAAAwHSUXAAAAAAAAExHyQUAAAAAAMB0NkYHAAAAAIBRNrfPHOr9uztbK0oCAFwtk1wAAAAAAABMR8kFAAAAAADAdJRcAAAAAAAATEfJBQAAAAAAwHQ2RgcAAI63w97IGwAAAAD2YpILAAAAAACA6Si5AAAAAAAAmI6SCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDpKLkAAAAAAACYzsboAAAAAAAwq83tM9/we3d3tlaYBADWj0kuAAAAAAAApqPkAgAAAAAAYDpKLgAAAAAAAKaj5AIAAAAAAGA6Si4AAAAAAACmo+QCAAAAAABgOkouAAAAAAAApqPkAgAAAAAAYDpKLgAAAAAAAKazMToAAHC0bW6fGR0BAAAAAC5hkgsAAAAAAIDpmOQCAAAAgAEOs2vC7s7WCpMAwJxMcgEAAAAAADAdJRcAAAAAAADTUXIBAAAAAAAwHffkAoA1cJi9/gEAgKPH/bwAwCQXAAAAAAAAE1JyAQAAAAAAMB0lFwAAAAAAANNRcgEAAAAAADAdJRcAAAAAAADTUXIBAAAAAAAwHSUXAAAAAAAA01FyAQAAAAAAMB0lFwAAAAAAANNRcgEAAAAAADCdjdEBAAAAAIBrZ3P7zKHev7uztaIkAHA4Si4AmMRhP4gCAAAAwHFiu0IAAAAAAACmo+QCAAAAAABgOkouAAAAAAAApqPkAgAAAAAAYDobowMAwDrZ3D4zOgIAAAAAHAsmuQAAAAAAAJiOkgsAAAAAAIDpKLkAAAAAAACYjntyAQAAAAAHdph7De/ubK0wCQDrziQXAAAAAAAA0zHJBQBX6TBXLQIAAAAAq2GSCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDpuCcXAAAAAHBNHOYex7s7WytMAsBxYJILAAAAAACA6Si5AAAAAAAAmI6SCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDpbIwOAADX2ub2mdERAAAAuEqH+Sy3u7O1wiQAHBUmuQAAAAAAAJiOkgsAAAAAAIDpKLkAAAAAAACYjntyATAl99UCAAAAgPWm5AJgGEUVAAAA18JhPn/u7mytMAkAq6TkAuBQFFUAAAAAwAjuyQUAAAAAAMB0lFwAAAAAAABMx3aFAAAAAAD7GLlNv/uBAVyeSS4AAAAAAACmY5ILAAAAAOAIOswUmSkwYB0ouQDW3MhtFwAAAAAAvlFKLgAAAACAY8YUGLAOlFwAx4BpLAAAAABg3bxgdAAAAAAAAAC4Wia5AFbIRBUAAAAwu5HnN2yVCFwNJRfARRRVAAAAAABH34FKrqq6I8k9SU4kube7dy56/fokf5zkFUk+m+T13b27fO3uJG9M8lySX+/uh1eWHmAPSioAAACAOY06r2OCDOZ0xZKrqk4keW+Sn05yLsljVXW6u5+44LA3Jvm/7v6eqjqV5N1JXl9VtyU5leSlSV6S5MNVdWt3P7fqbwTY32F+ORj1A15RBQAAAMC1MuP5M+Bgk1y3Jznb3U8lSVU9mOTOJBeWXHcm+a3l1w8leU9V1fL5B7v7K0n+o6rOLv+8f1hNfLi21rF4WcfvGQAAAAAOah3Pn40s9mb891aEPn8OUnLdmOTpCx6fS/Ij+x3T3eer6vNJvn35/CMXvffGi/+CqnpTkjctH36pqj51oPRwMDck+czoEMCBWK8wD+sV5mG9wjysV5iH9cpaq3ePTnDVhq7ZCf+9Rvuugx54oHtyPd+6+31J3jc6B8dTVX2su394dA7gyqxXmIf1CvOwXmEe1ivMw3qFuVizx9cLDnDMM0luuuDxyeVzex5TVRtJXpTkswd8LwAAAAAAAFyVg5RcjyW5papurqrrkpxKcvqiY04necPy659P8pHu7uXzp6rq+qq6OcktST66mugAAAAAAACsqytuV7i8x9Zbkzyc5ESS+7v78ar67SQf6+7TSe5L8idVdTbJ/2ZRhGV53PuTPJHkfJK3dPdzz9P3AvuxFSbMw3qFeVivMA/rFeZhvcI8rFeYizV7TNVi4AoAAAAAAADmcZDtCgEAAAAAAOBIUXIBAAAAAAAwHSUXa6Gq7qqqf6uqx6vqd0bnAa6sqt5eVV1VN4zOAuytqn53+fP1X6rqz6vqxaMzAV+vqu6oqk9V1dmq2h6dB9hbVd1UVX9XVU8sP7e+bXQm4PKq6kRV/VNV/dXoLMD+qurFVfXQ8rPrk1X1Y6MzsVpKLo69qnp1kjuTvKy7X5rk9wZHAq6gqm5K8jNJ/nN0FuCyPpTk+7v7B5P8e5K7B+cBLlBVJ5K8N8nPJrktyS9U1W1jUwH7OJ/k7d19W5IfTfIW6xWOvLcleXJ0COCK7knyt939fUleFuv22FFysQ7enGSnu7+SJN396cF5gCv7gyS/maRHBwH2190f7O7zy4ePJDk5Mg9widuTnO3up7r72SQPZnHxF3DEdPd/dffHl19/MYsTcDeOTQXsp6pOJtlKcu/oLMD+qupFSX4iyX1J0t3PdvfnxqZi1ZRcrINbk/x4VT1aVX9fVa8cHQjYX1XdmeSZ7v7E6CzAVfnVJH8zOgTwdW5M8vQFj8/FSXM48qpqM8kPJXl0bBLgMv4wiwszvzo6CHBZNyf5nyR/tNxe9N6qeuHoUKzWxugAsApV9eEk37nHS+/M4v/5t2Wx5cMrk7y/qr67u02IwCBXWLPvyGKrQuAIuNx67e6/XB7zziy2WXrgWmYDgOOmqr4lyZ8l+Y3u/sLoPMClquq1ST7d3f9YVT85Og9wWRtJXp7kru5+tKruSbKd5F1jY7FKSi6Ohe7+qf1eq6o3J/nAstT6aFV9NckNWbT4wAD7rdmq+oEsrrL5RFUli63PPl5Vt3f3f1/DiMDS5X7GJklV/XKS1yZ5jQtI4Mh5JslNFzw+uXwOOIKq6puyKLge6O4PjM4D7OtVSV5XVT+X5JuTfGtV/Wl3/+LgXMClziU5191fm45+KIuSi2PEdoWsg79I8uokqapbk1yX5DNDEwF76u5Pdvd3dPdmd29m8cvIyxVccDRV1R1ZbNPyuu7+8ug8wCUeS3JLVd1cVdclOZXk9OBMwB5qcYXXfUme7O7fH50H2F93393dJ5efWU8l+YiCC46m5fmkp6vqe5dPvSbJEwMj8TwwycU6uD/J/VX1r0meTfIGV5oDwEq8J8n1ST60nL58pLt/bWwk4Gu6+3xVvTXJw0lOJLm/ux8fHAvY26uS/FKST1bVPy+fe0d3//XATABwHNyV5IHlRV9PJfmVwXlYsXKuHwAAAAAAgNnYrhAAAAAAAIDpKLkAAAAAAACYjpILAAAAAACA6Si5AAAAAAAAmI6SCwAAAAAAgOkouQAAAAAAAJiOkgsAAAAAAIDp/D8xmog4qTIBTQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 2160x720 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy import stats\n",
"\n",
"data = stats.norm.rvs(size=100000, loc=0, scale=1.5, random_state=123)\n",
"hist = np.histogram(data, bins=100)\n",
"hist_dist = stats.rv_histogram(hist)\n",
"\n",
"plt.title(\"PDF from Template\")\n",
"plt.hist(data, density=True, bins=100)\n",
"plt.plot(X, hist_dist.pdf(X), label='PDF')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 274,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[355,\n",
" 230,\n",
" 188,\n",
" 187,\n",
" 168,\n",
" 165,\n",
" 159,\n",
" 136,\n",
" 122,\n",
" 116,\n",
" 110,\n",
" 108,\n",
" 79,\n",
" 68,\n",
" 62,\n",
" 35,\n",
" 34,\n",
" 27,\n",
" 26,\n",
" 25,\n",
" 24,\n",
" 20,\n",
" 18,\n",
" 14,\n",
" 14,\n",
" 12,\n",
" 8,\n",
" 7,\n",
" 5,\n",
" 4,\n",
" 4,\n",
" 4,\n",
" 4,\n",
" 4,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 2,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1]"
]
},
"execution_count": 274,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x[1]"
]
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 319,
"execution_count": 319,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment