Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
tap1012
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Mario Chirinos Colunga
tap1012
Commits
9082c6af
Commit
9082c6af
authored
Mar 23, 2019
by
Victor Hugo Pacheco Flores
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Practica 3 del parcial 2
parent
369ad78c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
81 additions
and
0 deletions
+81
-0
Test2-3.ipynb
Test2-3.ipynb
+81
-0
No files found.
Test2-3.ipynb
0 → 100644
View file @
9082c6af
{
"cells": [
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGWtJREFUeJzt3X+UX3V95/HnywSCPRb5NfVggiaWdG2qNa4hsqdKK/4Kuyyhp6BwEMKWI3WVbnetrnFdoZtqV7ddsZ6llFR+iSJQXJccDY2sQN2zWzDDD4HAoQ4RSSKVkR+iImDkvX98b/TLOJn5JnduJsM8H+fck3s/9/P5fD/3nsy85v743puqQpKk3fW86R6AJGlmM0gkSa0YJJKkVgwSSVIrBokkqRWDRJLUikEiDSDJ/UneNFM/J8lLkvwwyZwB6/9uki1Nm1dP9Xj03GKQ6DltTwXAdEtybfNLv396MkkleUlVPVBVL6iqnw7Y5V8AZzVtbuty7Jr55k73ACS1V1XH9C83Rx5fBb5dVQ/sRpcvBTZNxdj03OcRiWalJAcm+VKS0SSPNvMLBmz7vCSrk9yX5OEkVyU5qFn35SR/OKb+HUl+dyd9nZrk200/Hxr0cwbwZ8BBwL9t+lrYHJ3MbZZvTPJfk3w9yeNJrklyUJJ5SX4IzAG+keS+AT9Ps5hBotnqecDF9P7yfgnwY+B/DNj2D4Hjgd8GXgw8CpzXrLsUeMeOikleBcwHvjy2kyRLgPOBU5t+Dgb6w2yiz9mpJCuBPwB+r6qemKDqacDvA4cC24FPVdVTVfWCZv2rqupXJ/s8ySDRrFRVD1fVF6rqiar6AfBRer+wB/Eu4ENVtbWqngL+BDih+Wt/HfBrSRY3dU8Frqyqp8fp5wTgS1X1taafDwPPDPg540ryq8AlwBlV9c1JtuOyqrqrqn7UfPbbBr0YL/UzSDQrJfmlJBc0p5UeB74GHDDgL9KXAl9M8liSx4B7gJ8CL6qqJ4ErgXckeR5wMnDZTvp5MbBlx0LzC/3hQT5nJ9u0H3A1cFFVfWGA7djSN/9tYB/gkAHaSc9ikGi2+mPgnwGvrar9gaOa8gzQdgtwTFUd0DftV1XbmvWXAqcAbwSeqKp/2Ek/DwKH7VhI8kv0Tm8N+jljnQf8EPjAANtA/2fTO733E+B7A7aVfsYg0WywT5L9+qa5wC/Tuy7yWHMB+5xd6O+vgY8meSlAkqHmugQATXA8A/x3dn40Ar2jh2OTvC7JvsAanv0zOeHn9Evy+8CxwNuravuA2/GOJEuaAFsDXL0LtwdLP2OQaDZYTy80dkx/AnwSeD69v8BvAv5uF/r7S3rXQr6S5AdN+9eOqfMZ4JXAZ3fWSVVtAt4DXE7v6ORRYOsufs4O/5neXVr/OM73SV6/kzaX0bue8k/AfsC/29lYpYnEF1tJUy/JacCZVfW66R7LeJLcCHy2qj493WPRzOcRiTTFmlNF7wbWTvdYpD3BIJGmUJK3AqPAd+mdspKe8zy1JUlqxSMSSVIrs+KhjYccckgtXLhwuochSTPKLbfc8r2qGpqs3qwIkoULFzI8PDzdw5CkGSXJtwep56ktSVIrBokkqRWDRJLUikEiSWrFIJEktWKQSJJaMUgkSa0YJJKkVgwSSVIrs+Kb7W284dI3TMvn3rDqhmn5XEnaVR6RSJJa6TRIkqxIcm+SkSSrx1n/3iR3J7kjyVd3vJu6WbcqyTebaVVf+WuS3Nn0+akk6XIbJEkT6yxIkswBzgOOAZYAJydZMqbabcCyqvpN4GrgvzVtDwLOofd+6uXAOUkObNqcD7wTWNxMK7raBknS5Lo8IlkOjFTV5qp6GrgCWNlfoapuqKonmsWbgAXN/FuB66rqkap6FLgOWJHkUGD/qrqpem/k+gxwfIfbIEmaRJdBMh/Y0re8tSnbmTOAaydpO7+Zn7TPJGcmGU4yPDo6uotDlyQNaq+42J7kHcAy4M+nqs+qWltVy6pq2dDQpO9lkSTtpi6DZBtwWN/ygqbsWZK8CfgQcFxVPTVJ2238/PTXTvuUJO05XQbJRmBxkkVJ9gVOAtb1V0jyauACeiHyUN+qDcBbkhzYXGR/C7Chqh4EHk9yZHO31mnANR1ugyRpEp19IbGqtic5i14ozAEuqqpNSdYAw1W1jt6prBcAf9vcxftAVR1XVY8k+VN6YQSwpqoeaebfDVwCPJ/eNZVrkSRNm06/2V5V64H1Y8rO7pt/0wRtLwIuGqd8GHjFFA5TktTCXnGxXZI0cxkkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIklrpNEiSrEhyb5KRJKvHWX9UkluTbE9yQl/5G5Lc3jc9meT4Zt0lSb7Vt25pl9sgSZpYZ29ITDIHOA94M7AV2JhkXVXd3VftAeB04H39bavqBmBp089BwAjwlb4q76+qq7sauyRpcF2+anc5MFJVmwGSXAGsBH4WJFV1f7PumQn6OQG4tqqe6G6okqTd1eWprfnAlr7lrU3ZrjoJ+PyYso8muSPJuUnmjdcoyZlJhpMMj46O7sbHSpIGsVdfbE9yKPBKYENf8QeBlwNHAAcBHxivbVWtraplVbVsaGio87FK0mzVZZBsAw7rW17QlO2KtwFfrKqf7Cioqger5yngYnqn0CRJ06TLINkILE6yKMm+9E5RrdvFPk5mzGmt5iiFJAGOB+6agrFKknZTZ0FSVduBs+idlroHuKqqNiVZk+Q4gCRHJNkKnAhckGTTjvZJFtI7ovn7MV1/LsmdwJ3AIcBHutoGSdLkurxri6paD6wfU3Z23/xGeqe8xmt7P+NcnK+qo6d2lJKkNvbqi+2SpL2fQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSplU6DJMmKJPcmGUmyepz1RyW5Ncn2JCeMWffTJLc307q+8kVJbm76vLJ5ja8kaZp0FiRJ5gDnAccAS4CTkywZU+0B4HTg8nG6+HFVLW2m4/rKPw6cW1WHA48CZ0z54CVJA+vyiGQ5MFJVm6vqaeAKYGV/haq6v6ruAJ4ZpMMkAY4Grm6KLgWOn7ohS5J2VZdBMh/Y0re8lXHewT6B/ZIMJ7kpyY6wOBh4rKq2T9ZnkjOb9sOjo6O7OnZJ0oDmTvcAJvDSqtqW5GXA9UnuBL4/aOOqWgusBVi2bFl1NEZJmvW6PCLZBhzWt7ygKRtIVW1r/t0M3Ai8GngYOCDJjgDcpT4lSVOvyyDZCCxu7rLaFzgJWDdJGwCSHJhkXjN/CPBbwN1VVcANwI47vFYB10z5yCVJA+ssSJrrGGcBG4B7gKuqalOSNUmOA0hyRJKtwInABUk2Nc1/HRhO8g16wfGxqrq7WfcB4L1JRuhdM7mwq22QJE2u02skVbUeWD+m7Oy++Y30Tk+Nbff/gFfupM/N9O4IkyTtBfxmuySpFYNEktSKQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSplU6DJMmKJPcmGUmyepz1RyW5Ncn2JCf0lS9N8g9JNiW5I8nb+9ZdkuRbSW5vpqVdboMkaWKdvWo3yRzgPODNwFZgY5J1fe9eB3gAOB1435jmTwCnVdU3k7wYuCXJhqp6rFn//qq6uquxS5IG1+U725cDI8071klyBbAS+FmQVNX9zbpn+htW1T/2zX8nyUPAEPAYkqS9SpentuYDW/qWtzZluyTJcmBf4L6+4o82p7zOTTJvJ+3OTDKcZHh0dHRXP1aSNKC9+mJ7kkOBy4B/U1U7jlo+CLwcOAI4CPjAeG2ram1VLauqZUNDQ3tkvJI0G3UZJNuAw/qWFzRlA0myP/Bl4ENVddOO8qp6sHqeAi6mdwpNkjRNugySjcDiJIuS7AucBKwbpGFT/4vAZ8ZeVG+OUkgS4HjgrikdtSRpl3QWJFW1HTgL2ADcA1xVVZuSrElyHECSI5JsBU4ELkiyqWn+NuAo4PRxbvP9XJI7gTuBQ4CPdLUNkqTJdXnXFlW1Hlg/puzsvvmN9E55jW33WeCzO+nz6CkepiSphb36Yrskae9nkEiSWjFIJEmtGCSSpFYMEklSKwaJJKkVg0SS1IpBIklqxSCRJLWy0yBJsj7Jwj03FEnSTDTREcnFwFeSfCjJPntqQJKkmWWnz9qqqr9Nci3wYWA4yWXAM33rP7EHxidJ2stN9tDGp4EfAfOAX6YvSCRJggmCJMkK4BP03iHyz6vqiT02KknSjDHREcmHgBOratMEdSRJs9xE10hevycHIkmamTr9HkmSFUnuTTKSZPU4649KcmuS7UlOGLNuVZJvNtOqvvLXJLmz6fNTzSt3JUnTpLMgSTIHOA84BlgCnJxkyZhqDwCnA5ePaXsQcA7wWmA5cE6SA5vV5wPvBBY304qONkGSNIAuj0iWAyNVtbmqngauAFb2V6iq+6vqDn7xbrC3AtdV1SNV9ShwHbAiyaHA/lV1U1UV8Bng+A63QZI0iS6DZD6wpW95a1PWpu38Zn7SPpOcmWQ4yfDo6OjAg5Yk7Zrn7LO2qmptVS2rqmVDQ0PTPRxJes7qMki2AYf1LS9oytq03dbM706fkqQOdBkkG4HFSRYl2Rc4id6XGwexAXhLkgObi+xvATZU1YPA40mObO7WOg24povBS5IG01mQVNV24Cx6oXAPcFVVbUqyJslxAEmOSLIVOBG4IMmmpu0jwJ/SC6ONwJqmDODdwKeBEeA+4NqutkGSNLnJnrXVSlWtB9aPKTu7b34jzz5V1V/vIuCiccqHgVdM7UglSbvrOXuxXZK0ZxgkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIklrpNEiSrEhyb5KRJKvHWT8vyZXN+puTLGzKT0lye9/0TJKlzbobmz53rPuVLrdBkjSxzoIkyRzgPOAYYAlwcpIlY6qdATxaVYcD5wIfB6iqz1XV0qpaCpwKfKuqbu9rd8qO9VX1UFfbIEmaXJdHJMuBkaraXFVPA1cAK8fUWQlc2sxfDbwxScbUOblpK0naC3UZJPOBLX3LW5uycetU1Xbg+8DBY+q8Hfj8mLKLm9NaHx4neABIcmaS4STDo6Oju7sNkqRJ7NUX25O8Fniiqu7qKz6lql4JvL6ZTh2vbVWtraplVbVsaGhoD4xWkmanLoNkG3BY3/KCpmzcOknmAi8EHu5bfxJjjkaqalvz7w+Ay+mdQpMkTZMug2QjsDjJoiT70guFdWPqrANWNfMnANdXVQEkeR7wNvqujySZm+SQZn4f4FjgLiRJ02ZuVx1X1fYkZwEbgDnARVW1KckaYLiq1gEXApclGQEeoRc2OxwFbKmqzX1l84ANTYjMAf438DddbYMkaXKdBQlAVa0H1o8pO7tv/kngxJ20vRE4ckzZj4DXTPlAJUm7ba++2C5J2vsZJJKkVgwSSVIrBokkqRWDRJLUikEiSWrFIJEktWKQSJJaMUgkSa0YJJKkVgwSSVIrBokkqRWDRJLUikEiSWrFIJEktWKQSJJa6TRIkqxIcm+SkSSrx1k/L8mVzfqbkyxsyhcm+XGS25vpr/vavCbJnU2bTyVJl9sgSZpYZ0GSZA5wHnAMsAQ4OcmSMdXOAB6tqsOBc4GP9627r6qWNtO7+srPB94JLG6mFV1tgyRpcl0ekSwHRqpqc1U9DVwBrBxTZyVwaTN/NfDGiY4wkhwK7F9VN1VVAZ8Bjp/6oUuSBtVlkMwHtvQtb23Kxq1TVduB7wMHN+sWJbktyd8neX1f/a2T9AlAkjOTDCcZHh0dbbclkqSd2lsvtj8IvKSqXg28F7g8yf670kFVra2qZVW1bGhoqJNBSpK6DZJtwGF9ywuasnHrJJkLvBB4uKqeqqqHAarqFuA+4Nea+gsm6VOStAd1GSQbgcVJFiXZFzgJWDemzjpgVTN/AnB9VVWSoeZiPUleRu+i+uaqehB4PMmRzbWU04BrOtwGSdIk5nbVcVVtT3IWsAGYA1xUVZuSrAGGq2odcCFwWZIR4BF6YQNwFLAmyU+AZ4B3VdUjzbp3A5cAzweubSZJ0jTpLEgAqmo9sH5M2dl9808CJ47T7gvAF3bS5zDwiqkdqSRpd+2tF9slSTOEQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSpFYNEktSKQSJJasUgkSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSplU6DJMmKJPcmGUmyepz185Jc2ay/OcnCpvzNSW5Jcmfz79F9bW5s+ry9mX6ly22QJE2sszckNu9cPw94M7AV2JhkXVXd3VftDODRqjo8yUnAx4G3A98D/nVVfSfJK+i9rnd+X7tTmjclSpKmWZdHJMuBkaraXFVPA1cAK8fUWQlc2sxfDbwxSarqtqr6TlO+CXh+knkdjlWStJu6DJL5wJa+5a08+6jiWXWqajvwfeDgMXV+D7i1qp7qK7u4Oa314SSZ2mFLknbFXn2xPclv0Dvd9Qd9xadU1SuB1zfTqTtpe2aS4STDo6Oj3Q9WkmapLoNkG3BY3/KCpmzcOknmAi8EHm6WFwBfBE6rqvt2NKiqbc2/PwAup3cK7RdU1dqqWlZVy4aGhqZkgyRJv6jLINkILE6yKMm+wEnAujF11gGrmvkTgOurqpIcAHwZWF1V/3dH5SRzkxzSzO8DHAvc1eE2SJIm0VmQNNc8zqJ3x9U9wFVVtSnJmiTHNdUuBA5OMgK8F9hxi/BZwOHA2WNu850HbEhyB3A7vSOav+lqGyRJk+vs9l+AqloPrB9Tdnbf/JPAieO0+wjwkZ10+5qpHKMkqZ29+mK7JGnvZ5BIkloxSCRJrXR6jUS77w2XvmHaPvuGVTdM22dLmnk8IpEktWKQSJJaMUgkSa0YJJKkVgwSSVIrBokkqRWDRJLUikEiSWrFLyTqF0zXlyH9IqSeq57rP1MekUiSWjFIJEmtGCSSpFYMEklSK50GSZIVSe5NMpJk9Tjr5yW5sll/c5KFfes+2JTfm+Stg/YpSdqzOguSJHOA84BjgCXAyUmWjKl2BvBoVR0OnAt8vGm7BDgJ+A1gBfBXSeYM2KckaQ/q8ohkOTBSVZur6mngCmDlmDorgUub+auBNyZJU35FVT1VVd8CRpr+BulTkrQHdfk9kvnAlr7lrcBrd1anqrYn+T5wcFN+05i285v5yfoEIMmZwJnN4g+T3DvBWA8BvjfB+tluj+yfnJ6uP6JL/h+amPtnclO+j6bgZ+qlg1R6zn4hsarWAmsHqZtkuKqWdTykGcv9Mzn30cTcP5Obyfuoy1Nb24DD+pYXNGXj1kkyF3gh8PAEbQfpU5K0B3UZJBuBxUkWJdmX3sXzdWPqrANWNfMnANdXVTXlJzV3dS0CFgNfH7BPSdIe1Nmpreaax1nABmAOcFFVbUqyBhiuqnXAhcBlSUaAR+gFA029q4C7ge3Ae6rqpwDj9TkFwx3oFNgs5v6ZnPtoYu6fyc3YfZTeAYAkSbvHb7ZLkloxSCRJrczqIPFxK78oyUVJHkpyV1/ZQUmuS/LN5t8Dp3OM0ynJYUluSHJ3kk1J/qgpdx81kuyX5OtJvtHso//SlC9qHoU00jwaad/pHut0ap7WcVuSLzXLM3b/zNog8XErO3UJvcfS9FsNfLWqFgNfbZZnq+3AH1fVEuBI4D3N/xv30c89BRxdVa8ClgIrkhxJ7xFI5zaPRHqU3iOSZrM/Au7pW56x+2fWBgk+bmVcVfU1enfQ9et/lM2lwPF7dFB7kap6sKpubeZ/QO8XwXzcRz9TPT9sFvdppgKOpvcoJJjl+yjJAuBfAZ9ulsMM3j+zOUjGe4TL/J3Une1eVFUPNvP/BLxoOgezt2ieVv1q4GbcR8/SnLa5HXgIuA64D3isqrY3VWb7z9sngf8IPNMsH8wM3j+zOUi0G5ovjM76e8aTvAD4AvDvq+rx/nXuI6iqn1bVUnpPn1gOvHyah7TXSHIs8FBV3TLdY5kqz9lnbQ3Ax60M7rtJDq2qB5McSu+vzFkryT70QuRzVfU/m2L30Tiq6rEkNwD/Ajggydzmr+7Z/PP2W8BxSf4lsB+wP/CXzOD9M5uPSHzcyuD6H2WzCrhmGscyrZpz2RcC91TVJ/pWuY8aSYaSHNDMPx94M71rSTfQexQSzOJ9VFUfrKoFVbWQ3u+d66vqFGbw/pnV32xv/iL4JD9/3MpHp3lI0y7J54HfofdI6+8C5wD/C7gKeAnwbeBtVTX2gvyskOR1wP8B7uTn57f/E73rJO4jIMlv0rtYPIfeH6tXVdWaJC+jd1PLQcBtwDuq6qnpG+n0S/I7wPuq6tiZvH9mdZBIktqbzae2JElTwCCRJLVikEiSWjFIJEmtGCSSpFYMEmkPa54g/K0kBzXLBzbLC6d3ZNLuMUikPayqtgDnAx9rij4GrK2q+6dtUFILfo9EmgbNY1ZuAS4C3gksraqfTO+opN0zm5+1JU2bqvpJkvcDfwe8xRDRTOapLWn6HAM8CLxiugcitWGQSNMgyVJ6DzM8EvgPzRODpRnJIJH2sOYJwufTe5fJA8CfA38xvaOSdp9BIu157wQeqKrrmuW/An49yW9P45ik3eZdW5KkVjwikSS1YpBIkloxSCRJrRgkkqRWDBJJUisGiSSpFYNEktTK/wf02ReF+gX5uwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import re\n",
"from operator import itemgetter \n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"frequency = {}\n",
"open_file = open('data/data_named_entity_recognition_sp_MX_locations.JSON', 'r')\n",
"file_to_string = open_file.read()\n",
"words = re.findall(r'(b[A-Za-z][a-z]{2,9}b)', file_to_string)\n",
"\n",
"for word in words:\n",
" count = frequency.get(word,0)\n",
" frequency[word] = count + 1\n",
"values=[] \n",
"for key, value in reversed(sorted(frequency.items(), key = itemgetter(1))):\n",
" values= np.append(values,[[key,value]])\n",
"\n",
"for i in range(len(values)):\n",
" #print(values[i])\n",
" if(i%2!=0):\n",
" x=np.append(values2,[int(values[i])])\n",
" \n",
"# the histogram of the data\n",
"patches = plt.hist(x, density=True, facecolor='g', alpha=0.75)\n",
"\n",
"plt.xlabel('X')\n",
"plt.ylabel('Y')\n",
"plt.title('La ley de Zipf')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment