Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
tap1012
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Mario Chirinos Colunga
tap1012
Commits
be0f1d49
Commit
be0f1d49
authored
Feb 26, 2019
by
Carlos David García Hernández
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Numpy Pandas
parent
512a5eb6
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
200 additions
and
258 deletions
+200
-258
05-NumPy&Pandas-checkpoint.ipynb
.ipynb_checkpoints/05-NumPy&Pandas-checkpoint.ipynb
+100
-129
05-NumPy&Pandas.ipynb
05-NumPy&Pandas.ipynb
+100
-129
No files found.
.ipynb_checkpoints/05-NumPy&Pandas-checkpoint.ipynb
View file @
be0f1d49
...
@@ -868,7 +868,7 @@
...
@@ -868,7 +868,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
20
,
"execution_count":
5
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -902,9 +902,19 @@
...
@@ -902,9 +902,19 @@
"#Tarea, generar el producto punto\n",
"#Tarea, generar el producto punto\n",
"def prod_punto(v1,v2):\n",
"def prod_punto(v1,v2):\n",
" '''\n",
" '''\n",
" Soy un docstring\n",
" Función que calcula el producto punto entre dos vectores de tamaño n\n",
" \n",
" Args:\n",
" v1 (vector): Lista vacia\n",
" v2 (vector): Lista vacia\n",
" \n",
" Yields:\n",
" \n",
" Examples:\n",
" >>> prod_punto([10,20],[2,4])\n",
" '100'\n",
" '''\n",
" '''\n",
" v
1,v2,v3=[],[],
[]\n",
" v
3=
[]\n",
" elementos=int(input(\"Cuantos elementos tienen tus vectores: \\n\"))\n",
" elementos=int(input(\"Cuantos elementos tienen tus vectores: \\n\"))\n",
" \n",
" \n",
" print(\"Ingresa los elementos uno a uno del vector 1 \\n\")\n",
" print(\"Ingresa los elementos uno a uno del vector 1 \\n\")\n",
...
@@ -922,29 +932,12 @@
...
@@ -922,29 +932,12 @@
" \n",
" \n",
" print(\"\\nVector 1: \"+str(v1)+\"\\n\"+\"Vector 2: \"+str(v2)+\"\\n\"+\"Suma Producto: \"+str(sumap))\n",
" print(\"\\nVector 1: \"+str(v1)+\"\\n\"+\"Vector 2: \"+str(v2)+\"\\n\"+\"Suma Producto: \"+str(sumap))\n",
" return sumap\n",
" return sumap\n",
"\n",
" #return prod_punto\n",
" #return prod_punto\n",
"x=prod_punto(3,4)"
" \n",
]
"vector1=[]\n",
},
"vector2=[]\n",
{
"x=prod_punto(vector1,vector2)"
"cell_type": "code",
"execution_count": 162,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 162,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Comprobacion con Numpy\n",
"np.matmul([10,20], [2,4])"
]
]
},
},
{
{
...
@@ -1024,21 +1017,11 @@
...
@@ -1024,21 +1017,11 @@
"'''\n",
"'''\n",
"\n",
"\n",
"### Muy PRO\n",
"### Muy PRO\n",
"m = np.array([[sum(row_a*col_b) for col_b in b.T] for row_a in a])\n",
"
###
m = np.array([[sum(row_a*col_b) for col_b in b.T] for row_a in a])\n",
"print(m, type(m))\n",
"
###
print(m, type(m))\n",
"###"
"###"
]
]
},
},
{
"cell_type": "code",
"execution_count": 212,
"metadata": {},
"outputs": [],
"source": [
"a=np.array(mat1)\n",
"b=np.array(mat2)\n"
]
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 118,
"execution_count": 118,
...
@@ -1162,28 +1145,6 @@
...
@@ -1162,28 +1145,6 @@
"mmult1(mat1,mat2)"
"mmult1(mat1,mat2)"
]
]
},
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[220, 280],\n",
" [490, 640]])"
]
},
"execution_count": 206,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Comprobacion con Numpy\n",
"np.matmul(mat1, mat2)"
]
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
...
@@ -1193,21 +1154,27 @@
...
@@ -1193,21 +1154,27 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
3
,
"execution_count": 2
06
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"[]"
"array([[220, 280],\n",
" [490, 640]])"
]
]
},
},
"execution_count": 2
3
,
"execution_count": 2
06
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
],
],
"source": []
"source": [
"#Comprobacion con Numpy ejercicio 1\n",
"np.matmul([10,20], [2,4])\n",
"#Comprobacion con Numpy ejercicio 2\n",
"np.matmul(mat1, mat2)"
]
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
...
@@ -1225,11 +1192,12 @@
...
@@ -1225,11 +1192,12 @@
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "markdown",
"execution_count": null,
"metadata": {},
"metadata": {},
"outputs": [],
"source": [
"source": []
"((trans(A)*A)^-1)*trans(A)\n",
"Nota: Utilizar arreglos de Numpy\n"
]
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
...
@@ -1249,7 +1217,7 @@
...
@@ -1249,7 +1217,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
41
,
"execution_count":
6
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -1259,21 +1227,21 @@
...
@@ -1259,21 +1227,21 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
51
,
"execution_count":
7
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a
0.994272
\n",
"a
-1.021430
\n",
"b
0.530519
\n",
"b
-0.479428
\n",
"c
1.162452
\n",
"c
-0.038148
\n",
"d
-0.981436
\n",
"d
0.998008
\n",
"e
-1.283798
\n",
"e
1.063352
\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
51
,
"execution_count":
7
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1285,21 +1253,21 @@
...
@@ -1285,21 +1253,21 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
46
,
"execution_count":
8
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"0
2.042498
\n",
"0
1.071136
\n",
"1
-0.964070
\n",
"1
1.001901
\n",
"2
-0.687132
\n",
"2
0.094653
\n",
"3
0.623300
\n",
"3
-0.492713
\n",
"4
1.366322
\n",
"4
0.829835
\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
46
,
"execution_count":
8
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1310,7 +1278,7 @@
...
@@ -1310,7 +1278,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
47
,
"execution_count":
9
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1322,7 +1290,7 @@
...
@@ -1322,7 +1290,7 @@
"dtype: int64"
"dtype: int64"
]
]
},
},
"execution_count":
47
,
"execution_count":
9
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1334,7 +1302,7 @@
...
@@ -1334,7 +1302,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
48
,
"execution_count":
10
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1347,7 +1315,7 @@
...
@@ -1347,7 +1315,7 @@
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
48
,
"execution_count":
10
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1366,16 +1334,16 @@
...
@@ -1366,16 +1334,16 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
53
,
"execution_count":
14
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"
0.9942721192063438
"
"
-1.0214304735714077
"
]
]
},
},
"execution_count":
53
,
"execution_count":
14
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1386,19 +1354,19 @@
...
@@ -1386,19 +1354,19 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
54
,
"execution_count":
15
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a
0.994272
\n",
"a
-1.021430
\n",
"b
0.530519
\n",
"b
-0.479428
\n",
"c
1.162452
\n",
"c
-0.038148
\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
54
,
"execution_count":
15
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1409,19 +1377,18 @@
...
@@ -1409,19 +1377,18 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
55
,
"execution_count":
16
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a 0.994272\n",
"d 0.998008\n",
"b 0.530519\n",
"e 1.063352\n",
"c 1.162452\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
55
,
"execution_count":
16
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1432,21 +1399,26 @@
...
@@ -1432,21 +1399,26 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
56
,
"execution_count":
28
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a 1.988544\n",
"0 0\n",
"b 1.061037\n",
"1 2\n",
"c 2.324904\n",
"2 4\n",
"d -1.962872\n",
"3 6\n",
"e -2.567597\n",
"4 8\n",
"dtype: float64"
"5 10\n",
"6 12\n",
"7 14\n",
"8 16\n",
"9 18\n",
"dtype: int64"
]
]
},
},
"execution_count":
56
,
"execution_count":
28
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1457,21 +1429,26 @@
...
@@ -1457,21 +1429,26 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
57
,
"execution_count":
29
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a True\n",
"0 False\n",
"b False\n",
"1 False\n",
"c True\n",
"2 False\n",
"d False\n",
"3 False\n",
"e False\n",
"4 False\n",
"5 True\n",
"6 True\n",
"7 True\n",
"8 True\n",
"9 True\n",
"dtype: bool"
"dtype: bool"
]
]
},
},
"execution_count":
57
,
"execution_count":
29
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1482,16 +1459,16 @@
...
@@ -1482,16 +1459,16 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
58
,
"execution_count":
20
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"
0.9942721192063438
"
"
-1.0214304735714077
"
]
]
},
},
"execution_count":
58
,
"execution_count":
20
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1509,7 +1486,7 @@
...
@@ -1509,7 +1486,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
59
,
"execution_count":
44
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -1519,7 +1496,7 @@
...
@@ -1519,7 +1496,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
60
,
"execution_count":
41
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1528,7 +1505,7 @@
...
@@ -1528,7 +1505,7 @@
"array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
"array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
]
]
},
},
"execution_count":
60
,
"execution_count":
41
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1539,7 +1516,7 @@
...
@@ -1539,7 +1516,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
6
2,
"execution_count":
4
2,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1558,7 +1535,7 @@
...
@@ -1558,7 +1535,7 @@
"dtype: int64"
"dtype: int64"
]
]
},
},
"execution_count":
6
2,
"execution_count":
4
2,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1614,15 +1591,9 @@
...
@@ -1614,15 +1591,9 @@
}
}
],
],
"source": [
"source": [
"#En series la suma es elemento a elemento poer con respecto al índice de toda la variable\n",
"(s[:6]+s[4:])"
"(s[:6]+s[4:])"
]
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
}
],
],
"metadata": {
"metadata": {
...
...
05-NumPy&Pandas.ipynb
View file @
be0f1d49
...
@@ -868,7 +868,7 @@
...
@@ -868,7 +868,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
20
,
"execution_count":
5
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -902,9 +902,19 @@
...
@@ -902,9 +902,19 @@
"#Tarea, generar el producto punto\n",
"#Tarea, generar el producto punto\n",
"def prod_punto(v1,v2):\n",
"def prod_punto(v1,v2):\n",
" '''\n",
" '''\n",
" Soy un docstring\n",
" Función que calcula el producto punto entre dos vectores de tamaño n\n",
" \n",
" Args:\n",
" v1 (vector): Lista vacia\n",
" v2 (vector): Lista vacia\n",
" \n",
" Yields:\n",
" \n",
" Examples:\n",
" >>> prod_punto([10,20],[2,4])\n",
" '100'\n",
" '''\n",
" '''\n",
" v
1,v2,v3=[],[],
[]\n",
" v
3=
[]\n",
" elementos=int(input(\"Cuantos elementos tienen tus vectores: \\n\"))\n",
" elementos=int(input(\"Cuantos elementos tienen tus vectores: \\n\"))\n",
" \n",
" \n",
" print(\"Ingresa los elementos uno a uno del vector 1 \\n\")\n",
" print(\"Ingresa los elementos uno a uno del vector 1 \\n\")\n",
...
@@ -922,29 +932,12 @@
...
@@ -922,29 +932,12 @@
" \n",
" \n",
" print(\"\\nVector 1: \"+str(v1)+\"\\n\"+\"Vector 2: \"+str(v2)+\"\\n\"+\"Suma Producto: \"+str(sumap))\n",
" print(\"\\nVector 1: \"+str(v1)+\"\\n\"+\"Vector 2: \"+str(v2)+\"\\n\"+\"Suma Producto: \"+str(sumap))\n",
" return sumap\n",
" return sumap\n",
"\n",
" #return prod_punto\n",
" #return prod_punto\n",
"x=prod_punto(3,4)"
" \n",
]
"vector1=[]\n",
},
"vector2=[]\n",
{
"x=prod_punto(vector1,vector2)"
"cell_type": "code",
"execution_count": 162,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 162,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Comprobacion con Numpy\n",
"np.matmul([10,20], [2,4])"
]
]
},
},
{
{
...
@@ -1024,21 +1017,11 @@
...
@@ -1024,21 +1017,11 @@
"'''\n",
"'''\n",
"\n",
"\n",
"### Muy PRO\n",
"### Muy PRO\n",
"m = np.array([[sum(row_a*col_b) for col_b in b.T] for row_a in a])\n",
"
###
m = np.array([[sum(row_a*col_b) for col_b in b.T] for row_a in a])\n",
"print(m, type(m))\n",
"
###
print(m, type(m))\n",
"###"
"###"
]
]
},
},
{
"cell_type": "code",
"execution_count": 212,
"metadata": {},
"outputs": [],
"source": [
"a=np.array(mat1)\n",
"b=np.array(mat2)\n"
]
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 118,
"execution_count": 118,
...
@@ -1162,28 +1145,6 @@
...
@@ -1162,28 +1145,6 @@
"mmult1(mat1,mat2)"
"mmult1(mat1,mat2)"
]
]
},
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[220, 280],\n",
" [490, 640]])"
]
},
"execution_count": 206,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Comprobacion con Numpy\n",
"np.matmul(mat1, mat2)"
]
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
...
@@ -1193,21 +1154,27 @@
...
@@ -1193,21 +1154,27 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
3
,
"execution_count": 2
06
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"[]"
"array([[220, 280],\n",
" [490, 640]])"
]
]
},
},
"execution_count": 2
3
,
"execution_count": 2
06
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
],
],
"source": []
"source": [
"#Comprobacion con Numpy ejercicio 1\n",
"np.matmul([10,20], [2,4])\n",
"#Comprobacion con Numpy ejercicio 2\n",
"np.matmul(mat1, mat2)"
]
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
...
@@ -1225,11 +1192,12 @@
...
@@ -1225,11 +1192,12 @@
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "markdown",
"execution_count": null,
"metadata": {},
"metadata": {},
"outputs": [],
"source": [
"source": []
"((trans(A)*A)^-1)*trans(A)\n",
"Nota: Utilizar arreglos de Numpy\n"
]
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
...
@@ -1249,7 +1217,7 @@
...
@@ -1249,7 +1217,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
41
,
"execution_count":
6
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -1259,21 +1227,21 @@
...
@@ -1259,21 +1227,21 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
51
,
"execution_count":
7
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a
0.994272
\n",
"a
-1.021430
\n",
"b
0.530519
\n",
"b
-0.479428
\n",
"c
1.162452
\n",
"c
-0.038148
\n",
"d
-0.981436
\n",
"d
0.998008
\n",
"e
-1.283798
\n",
"e
1.063352
\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
51
,
"execution_count":
7
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1285,21 +1253,21 @@
...
@@ -1285,21 +1253,21 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
46
,
"execution_count":
8
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"0
2.042498
\n",
"0
1.071136
\n",
"1
-0.964070
\n",
"1
1.001901
\n",
"2
-0.687132
\n",
"2
0.094653
\n",
"3
0.623300
\n",
"3
-0.492713
\n",
"4
1.366322
\n",
"4
0.829835
\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
46
,
"execution_count":
8
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1310,7 +1278,7 @@
...
@@ -1310,7 +1278,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
47
,
"execution_count":
9
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1322,7 +1290,7 @@
...
@@ -1322,7 +1290,7 @@
"dtype: int64"
"dtype: int64"
]
]
},
},
"execution_count":
47
,
"execution_count":
9
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1334,7 +1302,7 @@
...
@@ -1334,7 +1302,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
48
,
"execution_count":
10
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1347,7 +1315,7 @@
...
@@ -1347,7 +1315,7 @@
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
48
,
"execution_count":
10
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1366,16 +1334,16 @@
...
@@ -1366,16 +1334,16 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
53
,
"execution_count":
14
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"
0.9942721192063438
"
"
-1.0214304735714077
"
]
]
},
},
"execution_count":
53
,
"execution_count":
14
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1386,19 +1354,19 @@
...
@@ -1386,19 +1354,19 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
54
,
"execution_count":
15
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a
0.994272
\n",
"a
-1.021430
\n",
"b
0.530519
\n",
"b
-0.479428
\n",
"c
1.162452
\n",
"c
-0.038148
\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
54
,
"execution_count":
15
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1409,19 +1377,18 @@
...
@@ -1409,19 +1377,18 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
55
,
"execution_count":
16
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a 0.994272\n",
"d 0.998008\n",
"b 0.530519\n",
"e 1.063352\n",
"c 1.162452\n",
"dtype: float64"
"dtype: float64"
]
]
},
},
"execution_count":
55
,
"execution_count":
16
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1432,21 +1399,26 @@
...
@@ -1432,21 +1399,26 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
56
,
"execution_count":
28
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a 1.988544\n",
"0 0\n",
"b 1.061037\n",
"1 2\n",
"c 2.324904\n",
"2 4\n",
"d -1.962872\n",
"3 6\n",
"e -2.567597\n",
"4 8\n",
"dtype: float64"
"5 10\n",
"6 12\n",
"7 14\n",
"8 16\n",
"9 18\n",
"dtype: int64"
]
]
},
},
"execution_count":
56
,
"execution_count":
28
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1457,21 +1429,26 @@
...
@@ -1457,21 +1429,26 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
57
,
"execution_count":
29
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"a True\n",
"0 False\n",
"b False\n",
"1 False\n",
"c True\n",
"2 False\n",
"d False\n",
"3 False\n",
"e False\n",
"4 False\n",
"5 True\n",
"6 True\n",
"7 True\n",
"8 True\n",
"9 True\n",
"dtype: bool"
"dtype: bool"
]
]
},
},
"execution_count":
57
,
"execution_count":
29
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1482,16 +1459,16 @@
...
@@ -1482,16 +1459,16 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
58
,
"execution_count":
20
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"
0.9942721192063438
"
"
-1.0214304735714077
"
]
]
},
},
"execution_count":
58
,
"execution_count":
20
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1509,7 +1486,7 @@
...
@@ -1509,7 +1486,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
59
,
"execution_count":
44
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -1519,7 +1496,7 @@
...
@@ -1519,7 +1496,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
60
,
"execution_count":
41
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1528,7 +1505,7 @@
...
@@ -1528,7 +1505,7 @@
"array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
"array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
]
]
},
},
"execution_count":
60
,
"execution_count":
41
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1539,7 +1516,7 @@
...
@@ -1539,7 +1516,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
6
2,
"execution_count":
4
2,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -1558,7 +1535,7 @@
...
@@ -1558,7 +1535,7 @@
"dtype: int64"
"dtype: int64"
]
]
},
},
"execution_count":
6
2,
"execution_count":
4
2,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1614,15 +1591,9 @@
...
@@ -1614,15 +1591,9 @@
}
}
],
],
"source": [
"source": [
"#En series la suma es elemento a elemento poer con respecto al índice de toda la variable\n",
"(s[:6]+s[4:])"
"(s[:6]+s[4:])"
]
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
}
],
],
"metadata": {
"metadata": {
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment